
APFS
No clever or witty subtitle.

Before we start.. If you want to follow along:

• Take the time to download:

• http://technologeeks.com/tools/fsleuth (or fsleuth.linux for Linux)

• Remove that stupid “.dms” extension (if using Safari)

• (mv ~/Downloads/fsleuth.dms ~/Downloads/fsleuth)

• chmod +x ~/Downloads/fsleuth

• ~/Downloads/fsleuth

• Open a terminal command prompt

• Because GUI is for wusses.

About this talk

• Just after this was announced, Apple *finally* released the spec..

• (only took them two years)

• Nonetheless, the spec looks like Javadoc/doxygen, and is pretty vague

• Not anything like TN1150 (HFS+)

• Research was reverse engineering, and spec filled in missing pieces

• Standing on the shoulders of giants:

• APFS research of Kurt H. Hansen & Fergus Toolan
(https://www.sciencedirect.com/science/article/pii/S1742287617301408)

APFS Features
The High Level View of APFS

APFS timeline

• New file system to replace venerable (15+ years) HFS+
• Disappointed many who were expecting Apple to adopt ZFS

• Announced in 2016:
• Initial MacOS 12 implementation was pretty bad:

• Defined as “preview”

• Full of incompatibilities with its own subsequent versions

• No boot support (= EFI protocol)

• Adopted first in iOS 10.3
• iOS 11.3 moved to snapshot based mounts (more on this later)

• Full adoption in MacOS 10.13
• Still evolving in MacOS 14 (notably, supports defragmentation)

APFS features

• 64-bitness:

• Support for ridiculous file sizes you’ll never run into.

• For-all-intents-and-purposes infinite number of files (264 inodes)

• Nanosecond-resolution timestamp since the Epoch (Jan 1st, 1970)

• Y2K38 safe

APFS features

• Built in volume management

• R.I.P CoreStorage* and iOS’s LwVM

• Partition is now formatted as “Container”

• Individual mountable filesystems are “Volumes”

• All volumes share same container

Filesystem Size Used Avail Capacity iused ifree %iused Mounted on

/dev/disk1s1 466Gi 399Gi 63Gi 87% 1753922 9223372036853021885 0% /

devfs 221Ki 221Ki 0Bi 100% 764 0 100% /dev

/dev/disk1s4 466Gi 3.0Gi 63Gi 5% 4 9223372036854775803 0% /private/var/vm

map -hosts 0Bi 0Bi 0Bi 100% 0 0 100% /net

map auto_home 0Bi 0Bi 0Bi 100% 0 0 100% /home

* - Goodbye, and Good Riddance!

APFS features

• Fast Directory Sizing

• Directory totals are saved along with the directory’s own inode

• Allows for faster applications of du(1) and of Finder’s Get Info

• Sparse file support

• Large files with vast swaths of zero’ed out data

• Using extents file system can store only actual data, working around “holes”

APFS features

• Cloning:

• Rather than copy a file, maintain another reference to it

• Any changes are stored as subsequent deltas

• Proprietary system call clonefileat(2) (#462), pretty well documented

APFS features

• Copy-on-Write

• Contrary to other file systems, changes do not get written into same block

• APFS is a Copy-on-Write filesystem

• This makes APFS especially Flash Friendly (avoids P/E cycles wear)

• Ensures much better resiliency in the face of possible crashes

• Also makes APFS a forensic analyst’s dream

• Surprisingly, though – no undelete functionality provided by Apple

APFS features

• Snapshots:

• Similar to well-known (and darn useful) virtual machine snapshots

• Used by Time Machine, through the tmutil(8) command-line

• Maintained by fs_snapshot(2) system call

APFS features

• Encryption

• APFS Fuses two of Apple’s strongest encryptions:

• FileVault (“Full Disk Encryption”)

• Required to mount the volume

• Remains in memory for lifetime of mount

• Hardware accelerated on iOS and Macs with new T2 chip that’s popping up everywhere

• NSFileProtectionClass (“Per File/Class Encryption”)

• Required to access a file

• One of four* protection classes

• D: Available C: Until First Unlock B: unless open A: unless unlocked

* - Technically, five, but I’m ignoring class F here

APFS features

• Additional features (inherited from VFS) are:

• Extended Attributes
• Arbitrary key/value combinations, viewable through ls -@

• Transparent File Compression
• chattr(1) compressed, ls -O

• Files compression metadata is in (invisible) com.apple.decmpfs extended attribute

• Small files compressed directly into attribute value; larger files compressed on disk

• Resource forks
• com.apple.ResourceFork extended attribute (ls -@)

• Also accessible through filename/../namefork/rsrc (yes, seriously)

• Ensures compatibility with MacintoshFS, from 20 years ago*

* - Also, great way to hide data, if you’re malware..

Apple’s APFS tools

Binary Purpose

apfsd(8) APFS Volume Management Daemon. Invoked automatically to maintain mounted volumes.

apfs.util(8) Extremely limited APFS file system utility

apfs_condenser MacOS 14 – shrink/defrag containers (won’t even output command line arguments)

apfs_invert Apparently inverts container and volume (not brave enough to try this yet)

apfs_stats Gets human readable statistics for IORegistry. Invoked by sysdiagnose(8)

fsck_apfs(8) APFS file system checker; Invoked automatically when fsck(8) detects APFS

hfs_convert(8) Converts HFS+ volumes to APFS

mount_apfs(8) APFS file system mounter; Invoked with –t apfs (or when APFS is detected)

newfs_apfs(8) Format a block device to create an APFS container and/or add volumes to an existing one

slurpAPFSMeta Dumps APFS metadata from an APFS volume. Useful for debugging..

But how does it really work?

• Don’t ask. You don’t need to know.

• It’s the best file system. Ever*.

• It Just Works.TM

* - ZFS advocates might disagree. But they’re just BSD-folk. This is Darwin. The very name of the OS shows how evolved it is.

Let’s get technical
The Low Level view of APFS

Ignorance was bliss. You might want to space out/Insta-Message-Snap-Post instead at this point

General file system nomenclature

Term Meaning

Block Atomic unit of disk space. Usually 512-8,192 bytes. APFS uses 4,096

Extent Sub unit of a block, used when files are smaller than a block size so as to save space

File A mapping of a logical name to a set of blocks and/or extents

Contiguity A File (or free space) spanning sequential blocks. May impact (non-SSD) disk I/O performance

Fragmentation Unallocated/freed blocks in non-contiguous chunks arising over time from file creation/deletion

SuperBlock A special block on disk, usually at fixed location(s), providing file system metadata

Inode Index node – metadata (block allocation, permissions, unique identifier) of file in file system.

fsck(8) A command you don’t want to find yourself executing.

A good file system must provide an optimal allocation of blocks (= less wasted space as possible), ensuring

maximum contiguity (= minimal fragmentation), reliability, and recoverability, while minimizing I/O overhead.

APFS file system blocks

• A given block in an APFS file system may be:

• Free: contents may be zeroed out, or left over from previous generation

• File data: contents may be fragment of some file data stream

• APFS object: One of specific types used by APFS for its metadata.

• APFS objects are easily recognizable by a Fletcher 64 checksum

• If checksum is valid, it’s an object

• If checksum is not valid, likely some stream fragment (or corrupt anyway)

• Caveat: Zero and all 0xFF blocks (which aren’t valid objects)

Fletcher checksum Object id (oid)

Transaction id (xid) blockType blockSubTypeflags

APFS Objects

• All object nodes start with a 32-byte header:

Fast checksum, must be valid

for block to be considered

Fast checksum, must be valid

for block to be considered

64-bit ID indexed by

the object map

64-bit ID indexed by

the object map

Allows versioning and

checkpoints for objects

Allows versioning and

checkpoints for objects

#

1 NXSB (Container)

2 B-Tree root node

3 B-Tree non-root node

12 Object Map

13 APSB (Volume)

#

0x0 Virtual

0x80.. Ephemeral

0x40.. Physical

Some 26 object types

are the common ones

Some 26 object types

presently defined – these

are the common ones

Flags indicate storage

method of object

Fletcher checksum Object ID (oid)

Transaction ID (xid) blockType blockSubTypeflags

Fast checksum, must be valid

for block to be considered
64-bit ID indexed by the

object map

Transaction ID allows

versioning and

checkpoints for objects

Block/Object Type

1 NXSB (Container)

2/3 B-Tree root/non-root node

5-9 Space Manager objects

11 Object Map

12 Checkpoint Map

13 APSB (Volume)

17/18 Reaper/Reap List

20 EFI Jumpstart (boot info)

22-23 Fusion Write Back Cache

24 Encryption Rolling Info

25,27 General Bitmap Tree/Block

Flag Meaning

0 Virtual

0x8000 Ephemeral

0x4000 Physical

0x2000 No header

0x1000 Encrypted

0x0800 Transient

The Block Types identify the type of

object contained
Flags indicate storage

type of object and

additional properties

Block/Object Sub Type

10 Extent List Tree

11 Object Map

14 File System Tree

15 Block Reference Tree

16 Snapshot Metadata Tree

19 Object Map Snapshot

21 Fusion Middle Trees

26 General Bitmap Tree

Block subtypes draw from

same space as block types, but

are commonly used when the

block type is a B-Tree node

APFS Objects

• Objects can be stored by one of three methods:

• Physical objects are stored at a physical 64-bit block address

• Ephemeral objects are stored on disk, but change during mount

• Virtual objects may “move about” disk and address needs to be looked up

• An object map is used to look up physical addresses of virtual objects

• Object map is a B-Tree

• Container Object Map for global (container-scope) objects

• Per-Volume Object Map for local (volume-scope) objects

To B or not to B(-Tree)

• B-Trees are fundamental data structures in modern file systems

• Used by HFS+, and unsurprisingly also in APFS (similar node format)

• Allows for quick conversion of apfs_hfs_convert

• Enable efficient lookup of nodes in logarithmic time – O(logb(n))

• 100 files – O(7) operations (for b=2)

• 1,000,000 files – O (20) operations (for b=2)

• 1,000,000,000 files – O(30) operations (for b=2)

• In practice b is higher than 2 (e.g. 5), making operations even more efficient.

Don’t just B. B+

• APFS B-Tree are specific types called B+ Trees, which satisfy:

• Every node can have a large number of children

• Internal nodes index the smallest keys in their children

• Insertion, deletion and search are all O(logbn)

• Caveat: APFS implementation tree are not sibling linked.

B-Tree Nodes

• B-Tree node format bears some similarities to that of HFS+

• Because A) it works and B) it makes for really fast conversion

• Nodes are of block type “2” (root) or “3” (non-root) nodes

• Contain fixed size header

• Contain a “table of contents” (ToC) indicating keys, values and free space

• Keys start in sequential order after ToC

• Values start at end of block, reverse sequential order

• Free space is in middle, fragmentation eventually managed by a free list

• Root nodes also have a small trailer information blob

Keys

Fletcher checksum Object id (oid)

Transaction id (xid) 0x3 Subtypeflags

APSB # Keys

Table of contents

LevelFlags
ToC

Length

ToC

Offset

Free Space

Len.

Free

Space Off.

Key Free

List Len

Key Free

List offset

Value Free

List len

Value Free

List Offset

Values

Free Space

Values start at end of node,

and advance backwards

Keys start at end of ToC, and

advance forward

The APFS B-Tree Leaf/Middle Node

ToC is array of key/value offset tuples (for fixed lengths)

Or key(len,offset)/value (len,offset) 4-tuples

From start of data

From beginning of

key area

Key Free List offset

key area

Key Free List offset

from beginning of

key area

Offset from END

of value area

All nodes but root are Type 3 Common 32-byte block header

Keys

Fletcher checksum Object id (oid)

Transaction id (xid) 0x2 SubTypeflags

APSB # Keys

Table of contents

Common 32-byte block header

The APFS B-Tree Root Node

LevelFlags

Free Space

Values

Node CountKey Count

Longest valueLongest KeyValue sizeKey Size

Node SizeFlags

Root nodes are type 2

Root nodes have metadata at

end of node (“before” values)

ToC

Length

ToC

Offset

Free Space

Length

Free

Space Off.

Key Free

List Len

Key Free

List offset

Value Free

List len

Value Free

List Offset

Keys

Fletcher checksum Object id (oid)

Transaction id (xid)
0x2 or

0x3
Subtypeflags

APSB # Keys

Table of contents

LevelFlags
ToC

Length

ToC

Offset

Free Space

Length

Free

Space Off.

Key Free

List Len

Key Free

List offset

Value Free

List len

Value Free

List Offset

Values

Free Space

Keys start at end of ToC, and

advance forward

Array of key/value offset tuples (If node

flags indicated fixed key/value sizes), or

key[len/offset]/value[len/offset] 4-tuples

From start of data From start of key area

Key Free List offset

from start of key area

Value Free offset from

END of value area

Values

Node CountKey Count

Longest valueLongest KeyValue sizeKey Size

Node SizeFlags

Free Space
Values start at the end of block,

(or at start of trailer, for root

nodes) and advance backwards

Root nodes (type 3) also

have a 40-byte trailer

Flag Meaning

0x1 Root Node

0x2 Leaf Node

0x4 Fixed Key/Value sizes

APFS Containers

• The container (“nx”) is the top level object of the partitioned space

• Contains one or more volumes (“apfs”)

• Effectively acts as a logical volume manager

• All volumes see and expand into the same free space

• Single Space Manager (“spaceman”) handles block allocation

• Container holds global object map

Checkpoint metadata

Fletcher checksum Object id (oid)

Transaction id (xid) 0x01 0x0flags

‘NXSB’ blockSize Block Count

Features ReadOnly Features

Incompatible Features UUID (1/2)

UUID (2/2) Next OID

Next XID

sizeof(nxsb) = 1616 bytes

Common 32-byte block header

Magic
0x1000

The APFS Container Superblock (NXSB)

Space Manager OID (Ephemeral)

Object Map OID (Physical) Reaper OID (Ephemeral)

testType Max # of FS

Total size of partition

Next available XID

Next available OID

Fusion UUID

Object id (oid)FileSystem OID array[0]

Counters array[31] Blacked out Prange

Blacked out Prange Evict Mapping Tree OID

Flags

The APFS Container Superblock (NXSB)

EFI Jumpstart

FileSystem OID array[1] …

FileSystem OID Array[99] Counters array[0]

Counters array[1] …

Array of up to max # of filesystems

(but not more than 100) File

System (i.e. Volume) OIDs

Checksum set and fail

counters (2/32 indices used)

Disallowed block

range (for shrinking)

0x4 – Software crypto

Key Locker Range

EFI driver blocks

UUID to match SSD

and HD partitions

Ephemeral info… and (presently) unknown fusion data

Block range for

crypto key data

0 Max # of FS

APFS Volumes

• The Volume (“apsb”) represents a mountable file system

• Contains its own object map

• Tied to a given xid (checkpoint)

• Changes frequently!

• Every filesystem level change (add/remove file object, quotas, etc)

• Deliberate snapshots

Crypto metadata

Fletcher checksum Object id (oid)

Transaction id (xid) 0xD (13) 0x0flags

‘APSB’ FS Index Features

ReadOnly Features Incompatible Features

Umount timestamp Reserve Block Count

Quota Block Count Allocated Block Count

Object Map OID (physical)

rootTreeType extentTreeType snapTreeType

Root Tree OID (virtual)

Extent Tree OID (physical) Snapshot Metadata Tree OID

Snapshot XID to revert to Volume Superblock to revert to

Next OID Number of Files

Common 32-byte block header

Magic

The APFS Volume Block(APSB) – 1/2

64-bit ns count from epoch, or 0 Free space reserved for uid 0 ownership

Filesystem quota, if any

(container) Object ID of

Volume object map B-Tree root of volume filesystem

Tree types provide hints for blockTypes

of the three respective trees

Wrapped cryptographic

metadata for volume

Number of blocks allocated (volume size)

Presently, 0 (none defined)

HARDLINK_MAP_RECORDS

(0x2) and DEFRAG (0x4)

[CASE/NORMALIZATION]_INSENSITIVE,

DATALESS_SNAPSHOTS and ENC_ROLLED

If non-zero, revert to this XID
Specifies physical OID of

superblock to revert to

OID (and inode #) to

assign to next FSObject

Number of Symbolic Links

Number of Other File Objects Number of Snapshots

Total Blocks allocated Total Blocks Freed

UUID

Number of Directories

Last Modified Timestamp File System Flags

Creator Data

Modifier Data

Snapshot XID to revert to Volume Superblock to revert to
Label (Up to 256 UTF-8 Characters)

RoleNext Doc ID 0 Root to XID

Encryption Rolling state sizeof(apsb) = 984 bytes

The APFS Volume Block(APSB) – 2/2

Volume Label

Used for UF_TRACKED files

None, Recovery, VM Swap, or Preboot

Usually, last fsck

newfs, diskutil,

hfs_convert, etc.

Unencrypted, effaceable,

single-key, etc.

Grows over time and

not decremented when

blocks are freed

Mounting

• Container superblock at 0x0 consulted

• Locate Checkpoint area to find other (previous) superblocks

• Find superblock with highest XID (may be the original superblock)

• Get Object Map of container

• Read fsOid array to see which volumes are in container

• Lookup fsOid in Object Map to get physical block

• Get Root Tree object ID from Volume’s OMAP

• Root file system will Be a Btree of type 2 (root) and subtype 14 (fstree)

Locating files

• Using Volume’s Root Tree B-Tree (as found from Volume’s omap)

• Every object is keyed by a 64 bit value:

•

•

Type Object ID

Inode identifier of object

Type(s) Purpose

1/11 Snapshot Metadata/Name

2/8 Physical/File extent

3 Inode

4 Xattr

5/12 Sibling/Sibling Map

6 Data Stream (file contents)

9 Directory record (dentry)

10 Directory statistics

• 60 least significant bits provide inode #

Locating files

• Files, directories and symlinks MUST have Inode records

• It’s not uncommon for one file system object to have multiple entries:
• Symlinks MUST also have xattr (com.apple.fs.symlink)

• Files usually have DSTREAMs, may have Extents and may have XATTR
• If com.apple.decmpfs is present, it may actually hold file stream for small files

• Directories commonly have records (their dentries), stats, and xattrs

• Snapshots must have both metadata and name records.

• File metadata reconstructed by walking over all records with same id.

• Sibling dentries will be with same id, to which name is concatenated.
• Dentry will reveal file/dir id, which will point to inode and any additional records.

Locating files

- Inode record will appear first

- If file is compressed, it will have com.apple.decmpfs xattr

- If file is small enough, content is embedded in attribute

- Otherwise, com.apple.ResourceFork holds compressed content in data stream

- If file is uncompressed, it will have one or more extent (type 8) records

- Extent record defines first block, size, and number of blocks for extent

SpaceMan

• The container uses a Space Manager (‘spaceman’) for all volumes

• POORLY DOCUMENTED in Apple’s reference

• Painful to work with..

• Space manager tracks container free space using:
• CIB: Chunk Info Block – containing bitmaps for contiguous chunks

• CAB: CIB Address Blocks – grouping together CIB bitmaps

• Internal Pool (IP) Bitmap

Free Queues….

Fletcher checksum Object id (oid)

Transaction id (xid) 0x5 0x0flags

Block size Blocks per chunk

Common 32-byte block header

Chunks per CIB CIBs per CAB

Block Count

Chunk Count

CIB count CAB count Free count

Address Offset …. ….

One spaceman device structure

for up to two devices

One spaceman device structure

for up to two devices

sm_flags IP BM Tx Mult IP Block Count

IP BM Size
IP BM Block

Count
IP Bitmap Base

IP Base Reserve Block Count

Reserve Alloc Count

Let’s get our hands dirty
Building a safe testing ground for APFS work

Experimenting with APFS

• hdiutil(1) is your friend for handling disks

• Command line interface of Disk Utility – faster, more efficient, mouse-free
#
Creates an empty APFS disk with no label, which will automatically get mounted as “/Volumes/Untitled”
#
morpheus@Chimera (~)$ hdiutil create -size 50m -type UDIF -attach ~/apfsTest.dmg -fs apfs
/dev/disk5 GUID_partition_scheme
/dev/disk5s1 Apple_APFS
/dev/disk6 EF57347C-0000-11AA-AA11-0030654
/dev/disk6s1 41504653-0000-11AA-AA11-0030654 /Volumes/untitled
created: /Users/morpheus/apfsTest.dmg
#
You can create and partition/label differently or format at any time want
#
morpheus@Chimera (~)$ diskutil partitionDisk disk5 GPT apfs "TEST APFS" 100%
Started partitioning on disk5
Unmounting disk
Creating the partition map
Waiting for partitions to activate
Formatting disk6s1 as APFS with name TEST APFS
Mounting disk
Finished partitioning on disk6
/dev/disk6 (disk image):
#: TYPE NAME SIZE IDENTIFIER
0: GUID_partition_scheme +52.4 MB disk5
1: Apple_APFS Container disk6 52.4 MB disk5s1

Experimenting with APFS

• diskutil(8) ‘s apfs menu will get you as far as Apple allows:
morpheus@Chimera (~)$ diskutil apfs list
APFS Containers (... found)
|
+-- Container disk1 THIS IS YOUR MAIN DISK. DON’T TOUCH ANYTHING HERE
..
+-- Container disk6 ... SOME RANDOM GUID ...

==
APFS Container Reference: disk6
Size (Capacity Ceiling): 52387840 B (52.4 MB)
Capacity In Use By Volumes: 671744 B (671.7 KB) (1.3% used)
Capacity Not Allocated: 51716096 B (51.7 MB) (98.7% free)
|
+-< Physical Store disk5s1 ... ANOTHER RANDOM GUID ...
| ---
| APFS Physical Store Disk: disk5s1
| Size: 52387840 B (52.4 MB)
|
+-> Volume disk6s1 ... YET ANOTHER RANDOM GUID ...

APFS Volume Disk (Role): disk6s1 (No specific role)
Name: TEST APFS (Case-insensitive)
Mount Point: /Volumes/TEST APFS
Capacity Consumed: 24576 B (24.6 KB)
FileVault: No

Experimenting with APFS

• To go any deeper takes fsleuth(j)

• The tool formerly known as HFSleuth now also has APFS support

• Freely downloadable from http://NewOSXBook.com/tools/fsleuth

• Pure user-mode POSIX implementation (MacOS, *OS, Linux and even Cygwin!)

• Outside MacOS, can run directly on the physical disk device/image

• In MacOS, requires an entitlement AAPL would never provide…

Morpheus@Chimera (~)$ fsleuth ~/apfsTest.dmg

FSleuth - HFS+/APFS diagnostic tool: Version 2.0(Buenos Aires) Compiled on Oct 1 2018 (C) 2013,2018 Jonathan Levin.
Free for non-commercial use. Latest version available from http://Technologeeks.com/tools.
For licensing, a reusable library or even more features (e.g. encryption), please email products@technologeeks.com

Container spanning 49.96 MB (12790 blocks) with 1/1 volumes
Volume 1: (Block 0xa1) Label: 'TEST APFS'

Contains 0 files, 0 directories, and 0 symlinks Size: 20.0 KB (5 blocks)
..
FSleuth(TEST APFS:/)>

Experimenting with APFS
FSleuth(untitled:/)> help
APFS Commands:
volinfo Display the volume header of the selected file system
volume Select an APFS volume by label or number
oid Find block matching object ID (oid) specified
xid Set active transaction ID. Will make only objects matching that XID accessible
diff Find FSTree differences between two XIDs (as 0x...) arguments
inode lookup inode specified
container Display APFS container details
block Smart-Dump a block (specified by 0x...)
undelete Undelete a specified file Smart-Dump a block (specified by 0x...)
..
Filesystem-independent Commands:
fs Set active file system for operations to specific mount point or device
listfs List all detected file systems and their types
pull copy file to /tmp (requires active file system)
dir list files (requires active file system) - synonymous with ls
ls list files (requires active file system) - synonmous with dir
cd Change directory (requires active file system)
string Search for string in entire partition/disk-image (lengthy!)
blockmap Produce a map of all blocks on this volume (copious output!)
hexdump Hex dump a block (specified as 0x...)
debug Toggle Debug traces on/off
xml Toggle XML Output on/off
verbose Toggle verbose mode on/off
color Toggle color on/off
uncompress Uncompress a DMG to _output_ (valid only on koly DMG inputs)
help Display this help
? Display this help
! Shell command
quit Quit this program
version Display version

Practical example
Demonstrating Copy on Write behavior, and checkpoints

Take aways

• Whether or not you like it, APFS is here to stay

• Reference doc – better late than never, but really, too little.

• Wait for MOXiI Volume II – it fills the gaps in Apple’s (incomplete) document

• APFS CAN support undelete, but Apple doesn’t want outside snapshots

• Fsleuth will change that.

• Still won’t be useful outside forensics due to entitlement (or disable SIP…?)

• State of fusion is in confusion..

• Fusion drive support undocumented, and largely irrelevant

The End
Or just the beginning –

APFS will stay with us until well after we will have all retired.

Resources

• Apple’s (finally-released-but-disappointing) APFS reference:
• https://developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf

• Seminal APFS research of Kurt H. Hansen & Fergus Toolan
(https://www.sciencedirect.com/science/article/pii/S1742287617301408)

• FSleuth (formerly HFSleuth) download:
• http://technologeeks.com/tools/fsleuth
• Release version coming soon!
• Pro version to be released via Technologeeks

• All this and further, even gorier details: *OS Internals, Volume II
• Dedicated chapters on VFS and APFS
• If you know anyone @AAPL – Please nag them to release the XNU-4903 sources..

