
Confidential   │ ©2020 VMware, Inc.

Binary Emulation for 
Threat Analysis with Binee
Erika Noerenberg | VMware Carbon Black

@gutterchurl

OBTS | 13 March 2020



Confidential │  ©2020 VMware, Inc.

Thanks!

Binee made possible by the talented 
folks of VMware Carbon Black’s TAU
team, especially:

https://me.me/i/mad-props-5361284

Kyle Gwinnup, @switchp0rt

John Holowczak, @skipwich



Confidential │  ©2020 VMware, Inc.

e$ whoami

● Senior Threat Researcher at VMware Carbon Black TAU
○ Malware analysis/RE, recently focusing on macOS endpoint security

○ Commodity malware research, detection, and prevention

● Many years in the security industry
○ Digital Forensics
○ Malware analysis and reverse engineering

○ iOS development ...

● Twitter: @gutterchurl



Confidential │  ©2020 VMware, Inc.

Why are we here? 



Confidential │  ©2020 VMware, Inc.

The Problem: getting information from binaries

Each sample contains some total set of information. Our goal is to extract 
as much of it as possible

Time/Cost to analyze

Sa
m

pl
e 

co
ve

ra
ge

Static

Dynamic

High coverage
Immediate 
discovery
Few features

Low coverage
Long 
discovery
Many features

Core Problems

1. Obfuscation hides much of the info

2. Anti-analysis is difficult to keep up with

3. Not all Malware is equal opportunity



Confidential │  ©2020 VMware, Inc.

Our Goal: Reduce cost of information extraction

1. Reduce the cost of features 
extracted via dynamic analysis

2. Increase total number of features 
extracted via static analysis

3. Ideally, do both of these at scale

Time/Cost to analyze

Sa
m

pl
e 

Co
ve

ra
ge

Dynamic

Static + 
Emulation

High coverage
Immediate 
discovery
Many features

Low coverage
Long 
discovery
Many features



Confidential │  ©2020 VMware, Inc.

The How: Emulation

Extend current emulators by mocking functions, system calls and OS 
subsystems



Confidential │  ©2020 VMware, Inc.

Why? Many Existing PE Emulators

● PyAna https://github.com/PyAna/PyAna

● Dutas https://github.com/dungtv543/Dutas

● Unicorn            https://github.com/unicorn-engine/unicorn

● Unicorn_pe https://github.com/hzqst/unicorn_pe

● PANDA Malrec https://giantpanda.gtisc.gatech.edu/malrec/dataset/

● Many other types of emulators https://www.unicorn-engine.org/showcase/

https://github.com/PyAna/PyAna
https://github.com/dungtv543/Dutas
https://github.com/unicorn-engine/unicorn
https://github.com/hzqst/unicorn_pe
https://giantpanda.gtisc.gatech.edu/malrec/dataset/
https://www.unicorn-engine.org/showcase/


Confidential │  ©2020 VMware, Inc.

What functionality exists for Mach-O files?

- Unicorn supports many architectures, including x86 / x86-64

- Unicorn emulation for Mach-O has already been proven

-qiliang project, implemented in python

-Confiant demonstrated construction 

and dumping of stack strings 

https://github.com/qilingframework/qiling/blob/master/qiling/os/macos/x8664.py
https://blog.confiant.com/new-macos-bundlore-loader-analysis-ca16d19c058c


Confidential │  ©2020 VMware, Inc.

What will we add/extend from current work?

• Mechanism for loading up a Mach-O file with its dependencies
• Framework for defining function and API hooks
• Mock OS subsystems, such as 

• Memory management  
• File system
• Userland process structures

• Mock OS environment configuration file
• Config file specifies language, keyboard, resources, etc…
• Rapid transition from one Mock OS configuration to another



Confidential │  ©2020 VMware, Inc.

Configuration files can be used to make subtle 
modifications to the mock environment which 

allows you to rapidly test malware in diverse 
environments



Confidential │  ©2020 VMware, Inc.

Configuration files defines OS environment quickly

● Yaml definitions to describe as much of the OS context as possible
○ Usernames, machine name, time, CodePage, OS version, etc…

● All data gets loaded into the emulated userland memory

root: "os/win10_32/"
code_page_identifier: 0x4e4
registry:

HKEY_CURRENT_USER\Software\AutoIt v3\AutoIt\Include: "yep"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Arbiters\InaccessibleRange\Psi:

"PhysicalAddress"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Arbiters\InaccessibleRange\PhysicalAddre
ss:
"hex(a):48,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
,00,01,00,00,00,00,00,00,00,01,00,00,00,00,03,00,00,00,00,00,00,00,00,00,00,00,00,00,00,
00,00,00,00,00,00,01,00,ff,ff,ff,ff,ff,ff,ff,ff"



Confidential │  ©2020 VMware, Inc.

Why do we need this? 

- Currently very little automated analysis and hunting capability for Mac

- Limited automated detonation functionality, mostly manual and time intensive

- No automated ability to gather actionable intel from collected Mac samples

- Heavy reliance on VT for sample collection and analysis

- Mach-O capability for Binee will greatly improve analysis workflow

- Ability to gain dynamic IOCs from larger numbers of Mac malware samples

- Actionable metadata and dynamic IOCs from samples for ML and analysis

- Hunting capability without reliance on VT 



Confidential │  ©2020 VMware, Inc.

What is the goal?

- Ability to parse, load, and emulate Mach-O binary

- Initial focus for this project is extraction of simple metadata and IOCs

- MVP - Initially only 64-bit Mach-O binaries, emulation of stdlib functions

- Development of architecture for Mac, integration into Binee source tree

- Goal is to have a working skeleton that can be easily expanded

- Initial capability and framework that is as simple as possible for analysts

- Eventual goal: Release Binee for 64-bit Mach-O

- Initial public release will allow similar basic functionality to Windows release



Confidential │  ©2020 VMware, Inc.

How will we accomplish this?

- Extend existing Binee framework, reusing applicable helper functionality

- Utilize Mach-O parsing functionality built in to the Go language 

- Create incremental catalog of sample emulation and matching unit tests 

- Use Unicorn to emulate CPU instructions, as in Binee for PE files

- As mentioned, Unicorn emulation for Mach-O has already been proven
- qiliang project, implemented in python

- Confiant demonstrated construction and dumping of stack strings

https://golang.org/pkg/debug/macho
https://github.com/qilingframework/qiling/blob/master/qiling/os/macos/x8664.py
https://blog.confiant.com/new-macos-bundlore-loader-analysis-ca16d19c058c


Confidential │  ©2020 VMware, Inc.

Results? It builds! 

https://gph.is/1mvaIqy



Confidential │  ©2020 VMware, Inc.

Well, not quite...

https://gph.is/1mvaIqy





Confidential │  ©2020 VMware, Inc.

Where are we now? Lessons learned.

- Ideally, this research would have dedicated full-time resources

- Unfortunately circumstances delayed start and limited developer time

- Real functionality not yet implemented, but skeleton code is partially functional

- Hard lesson: Writing code and writing a program are *very* different

- Expectation that most core functionality would come from intrinsic Go libraries

- Unfortunately they didn’t provide everything, needed additional customization

- Functional interdependence with existing PE code made incremental  

development difficult



Confidential │  ©2020 VMware, Inc.

Current state: Much work to be done

- What we have:

- Working command line option for loading a Mach-O vs. PE file

- Loader partially implemented, but much work to be done

- Able to pull info from input binary, but no emulation implemented

- What we need: 

- Full structures with all necessary data populated

- Mapping of binary into virtual memory space 

- Loading/mapping necessary dylibs and emulation of instructions with Unicorn



Confidential │  ©2020 VMware, Inc.

Once we are able to collect this “dynamic” data statically, 
how can we use it for threat hunting? 



Confidential │  ©2020 VMware, Inc.https://66.media.tumblr.com/6e712ba0f8448425c42932fc877c6d0f/tumblr_oxjn95RCo91wvuif9o1_1280.jpg



Confidential │  ©2020 VMware, Inc.

Threat Hunting with Binee

● Dynamic automated decoding/decrypting of payloads or config data
○ Ability to “statically” unpack more files at scale increases our pool of searchable metadata

● Hunting across large datasets - ingesting millions of samples per day? 
○ Can’t realistically detonate every sample 
○ Sophisticated YARA rules can be time-consuming and performance heavy

● Automated collection of runtime IOCs at the scale of static analysis
● Malware sample fingerprinting

○ Access to additional imports loaded at runtime (as in the case of dynamic API resolution) allows 
for richer imphash/impfuzzy results

○ Richer “static” data provides more metadata that can be used to narrow down a dataset to a 
manageable number of samples on which to apply more time- and resource-intensive tasks



Confidential │  ©2020 VMware, Inc.

Future excitement!

Near(ish?) term:

● Complete basic Mach-O functionality and increase fidelity 
● IOC flag for formatted output (such as json)
● Public release on GitHub!!!

Longer term:

● Single step mode, debugger style
● Networking stack and implementation, including hooks
● Add ELF (*nix) and continue to extend macOS support
● Anti-Emulation functionality



Confidential │  ©2020 VMware, Inc.

Thank you and come hack with us

https://github.com/carbonblack/binee

Slack workspace: cb-binee.slack.com

Carbon Black 
TAU

Erika Noerenberg 
@gutterchurl

https://github.com/carbonblack/binee

