
Job(s) Bless Us!
Privileged Operations on macOS

@aronskaya 🇺🇦

WWC	Kyiv	macOS	Chapter	Lead

Software	Engineer,	
Anti-malware	team,	
Triage	team

iaronskaya

Agenda
Intro	to	privileged	operations	API	on	macOS		

First	CleanMyMac's	security	issue,	reported	by		

CleanMyMac	on	

Comparison	of	privileged	operations	implementation	on										and	

Summary	&	Takeaways

Intro to privileged
operations API on macOS

In
tr

o

High-level APIs

SMJobBless() AuthorizationExecuteWithPrivileges()

In
tr

o

High-level APIs

SMJobBless() AuthorizationExecuteWithPrivileges()

In
tr

o

High-level APIs

SMJobBless() AuthorizationExecuteWithPrivileges()

In
tr

o

In
tr

o

There is no ‘UnBless’ 😔

Signing requirements

👑🧢
Client Privileged Helper

Client has requirements for Helper(s)

Helper has requirements for Client(s)

OS performs validation of the requirements ONLY on install & update of the Helper

NO validation is performed on establishing XPC connection

In
tr

o

SMJobBless()
1. Client has the Privileged Helper

executable in the bundle
2. Signing requirements are met

• Both client and Helper are signed
• Privileged Helper has a plist file for launchd

embedded into __TEXT section
• Privileged Helper has Info.plist embedded
• Client has signing requirements listed in its Info.plist

In
tr

o

SMJobBless()
3. Obtain Authorization object:

call AuthorizationCreate()

4. Call SMJobBless() with acquired
Authorization object

In
tr

o

SMJobBless()
5. OS validates code signing requirements in client and helper’s

Info.plist and copies the executable from the bundle to
/Library/PrivilegedHelperTools

In
tr

o

SMJobBless()
5. Client can establish XPC connection to the Privileged Helper

In
tr

o

Apple’s Sample CodeIn
tr

o

Apple’s Sample CodeIn
tr

o

Apple’s Sample Code

🤔

In
tr

o

Issue #1

🤨

In
tr

o

First security issue,
reported by

Ta
lo

s

Zero-Day Reports
• November 2018

Ta
lo

s

Ta
lo

s

Stumbled upon Talos’es
Zero-Day reports

Contacted Talos for details,
they answer the same day

We release
a patched update

v. 4.2.0
Talos reports
insufficient fix

We release
a patch
v. 4.3.0

Tyler Bohan (Talos)
delivers a talk

at OffenciveCon19

TimelineTa
lo

s

0 1

Tyler Bohan: ‘OSX XPC Revisited - 3rd Party Application
Flaws’ at OffensiveCon19

https://www.youtube.com/watch?v=KPzhTqwf0bA

Ta
lo

s

https://www.youtube.com/watch?v=KPzhTqwf0bA

Tyler Bohan: ‘OSX XPC Revisited - 3rd Party Application
Flaws’ at OffensiveCon19

https://www.youtube.com/watch?v=KPzhTqwf0bA

Ta
lo

s

https://www.youtube.com/watch?v=KPzhTqwf0bA

FixTa
lo

s

Fix #1Ta
lo

s

on

h1

Timeline

March 2018

MacPaw launched a private h1 program
for our other product Setapp

May 2019

CleanMyMac desktop client is added to the scope

h1

Client’s requirements

{

Bundle identifier Signing identity (team id)

{

h1

Client’s requirements

Privileged helper’s executable can be replaced with old version

{

Bundle identifier Signing identity (team id)

{

h1

What’s the fuss about old versions?
h1

What’s the fuss about old versions?

El Capitan 10.11 Sierra 10.12 High Sierra 10.13 Mojave 10.14 Catalina 10.15

Hardened Runtime introduced in Mojave:
• libraries signing validation == protect from dylib injection
• remove get-task-allow from entitlements == protect from attaching with debugger

(and other things)

h1

Issue #2: steps
Preconditions: Privileged Helper is not authorized yet. A malicious
executable is present on the user’s computer.

1. Download an app version, vulnerable to dylib injection

2. Replace the Privileged Helper executable in the installed app with the
vulnerable one

3. User authorizes the Helper

4. Perform a dylib injection into the Helper—it is run as root!

h1

What about code signing?
Replacing the Privileged Helper in the signed bundle
doesn’t change anything, because

OS validates the signature only when app is quarantined

After the first launch no signature validation is
performed on Mojave.

Time-to-time signature checks were announced in Catalina.

h1

Fix #2
h1

{

Version check

Privileged Helper’s requirements

{

Signing identity (team id)

h1

old 🐞 client versions can connect

Privileged Helper’s requirements

{

Signing identity (team id)

h1

Issue #3: steps
Preconditions: Privileged Helper is authorized. A malicious executable is
present on the user’s computer.

• Download an old app version, vulnerable to dylib injection

• Launch client executable with a dylib injection

• Call privileged helper’s methods from the injected code

• In our case it leads to LPE to root

h1

Issue #3: steps
Preconditions: Privileged Helper is authorized. A malicious executable is
present on the user’s computer.

• Download an old app version, vulnerable to dylib injection

• Launch client executable with a dylib injection

• Call privileged helper’s methods from the injected code

• In our case it leads to LPE to root

Takeaway: Dylib injection does NOT break the code signature

h1

Fix #3
h1

old 🐞 client versions can connect

other apps of the same vendor can connect

Privileged Helper’s requirements

{

Signing identity (team id)

h1

Fix #4
h1

Privileged Helper’s code
h1

anyone can impersonate the client due to pid checks logic performed by OS

Privileged Helper’s code
h1

Issue #5: anyone can impersonate the client
due to 🐞 racy 🐞 pid checks performed by OS

h1

h1

Fix #5
h1

The APIs are private 😞
h1

Privileged operations
implementation on

and

Se
ta

pp

SMJobBless() AuthorizationExecuteWithPrivileges()

Application

API

bugs
reported* 5

Se
ta

pp

* as for March 2020

SMJobBless() AuthorizationExecuteWithPrivileges()

Application

API

bugs
reported* 5 0

* as for March 2020

Se
ta

pp

Summary & Takeaways

Su
mm

ar
y

Takeaways for developers
1. Think about security in your project/company. A good start is creating a security@yourcompany.com email handle.

2. Have one source of truth for Client’s signing requirements and one for Privileged Helper’s, e.g. put them in Preprocessor Macros and use it
in:

ℹ Info.plist file

👑 listener:shouldAcceptNewConnection:

3. In signing requirements check at least for:

🧑💻 signing identity

🆔 bundle identifier

#⃣ minimum version

4. In SecCodeCopyGuestWithAttributes use 🔖 audit token to obtain code reference for signature validation, not the pid

5. In order to be a good citizen remember to unregister the Privileged Helper via launchctl or SMJobRemove API, remove the executable
from /Library/PrivilegedHelperTools and the auto generated .plist from /Library/LaunchDaemons

Su
mm

ar
y

Example set up requirements
for Privileged Helper

1. Add User-Defined Build Settings:

CLIENT_REQUIREMENTS="@\"anchor trusted and certificate leaf
[subject.CN] = \\\"$(CLIENT_SIGNING_IDENTITY)\\\" and
info[CFBundleShortVersionString] >= \\\"$CLIENT_MIN_VERSION\\\"
and identifier \\\"$CLIENT_IDENTIFIER\\\"\""

2. Use them to create a macro definition

Su
mm

ar
y

3. Use your Build Settings in Info.plist client requirements:

4. Use the Macro Definition from 2. in code to validate incoming connection:

Example set up requirements
for Privileged HelperSu

mm
ar

y

📝 Summary/WishlistSu
mm

ar
y

📝 Summary/Wishlist
1. We need the documentation

There is no easily available Apple’s documentation about securing XPC connection with Privileged Helpers

2. We need Code Samples

Apple’s code samples are not secure

3. Using pid to check the signature of a process is not secure. It should be clearly stated in docs

Checks by pid are racy by nature

4. Audit token should not be private

It is the most secure way, but it is not available to 3rd party developers

5. There should be some Uninstallation API

When the app is being removed, the Helpers are usually forgotten in /Library/PrivilegedHelperTools

Su
mm

ar
y

📖 Further Reading
1. project-zero ‘Issue 1223: MacOS/iOS userspace entitlement checking is racy’ by

Ian Beer

2. OffensiveCon19 'OSX XPC Revisited - 3rd Party Application Flaws' by Tyler Bohan

3. Apple Developer Forums 'XPC restricted to processes with the same code
signing?'

4. Objective Development ‘The Story Behind CVE-2019-13013’ by Christian from
Little Snitch

5. ‘No Privileged Helper Tool Left Behind’ by Erik Berglund

Su
mm

ar
y

https://bugs.chromium.org/p/project-zero/issues/detail?id=1223
https://www.youtube.com/watch?v=KPzhTqwf0bA
https://forums.developer.apple.com/thread/72881
https://forums.developer.apple.com/thread/72881
https://blog.obdev.at/what-we-have-learned-from-a-vulnerability/
https://erikberglund.github.io/2016/No_Privileged_Helper_Tool_Left_Behind/

Call to Action 🧞
If I could ask you to do 1 thing, let it be:

Su
mm

ar
y

Call to Action 🧞Su
mm

ar
y

reporting to Apple, that audit tokens should be made available for 3rd party
developers:

If I could ask you to do 1 thing, let it be:

Thank you! 🤓

iaronskaya

