Kernel Exploitation
on Apple's M1 Chip

@08Tc3wBB | ZecOps Mobile EDR

#OBTS v4.0 | Maui, Hawaii, USA | Sept 30th, 2021
Special thanks to Zuk Avraham (@ihackbanme)

AppleAVE?2

 |t's a IOKIit driver runs in kernel space
» Handles video encoding in formats: H264, HEVC, etc
* Only for ARM-based devices

- i0S

- iPadOS

- M1 Chip Macs

@» zecOps

AppleAVE?2

» Before Apple introduces the M1 chip (Nov, 2020)
- Only iOS

- Closed source code, and most symbols have been
deleted

« SBX 0Oday or jailbroken device is required to debug this
driver

- Less auditing eyes ;)

@» zecOps

AppleAVE?2

e Researcher Adam found a lot of vulnerabilities in this driver back in 2017

* Apple didn't bar access to AppleAVE2 from sandbox back then

CVE-201/-6998
An attacker can hijack kernel code execution due to a type confusion
CVE-201/7-6994

An information disclosure vulnerability in the AppleAVE kext kernel extension allows an attacker
to leak the kernel address of any IOSurface object in the system.

CVE-2017-6989

A vulnerability in the AppleAVE.kext kernel extension allows an attacker to drop the refcount of
any |IOSurface object in the kernel.

CVE-2017-6997

An attacker can free any pointer of size 0x28.

CVE-201/-6999

A user-controlled pointer is zeroed.

@» zecOps

AppleAVE?2

These vulnerabillities discovered by Adam in 2017 are
very straightforward and easy to trigger

Kernel Memory
Kernel Pointers

User-Space

Kernel Memory
Kernel Pointers

@» zecOps

AppleAVE2 (2017)

* Kernel Pointer Hijacking
- Free arbitrary kernel memory
- Empty arbitrary kernel memory

- Arbitrary code execution on Non- Kernel Memory
PAC device Kernel Pointers

K 1 -
- Race Conditions e ‘

User-Space Memory mapping

* Kernel Pointer Leaking

- Bypass KASLR
Kernel Memory
- Assist Heap feng shui Kernel Pointers

@» zecOps

AppleAVE2,2017)
« Kernel Pointer Hijacking hls is 201 7.,

- Free arbitrary kernel memory
Kernel Memory
Kernel Pointers

Kernel A :

- Empty arbitrary kernel memory

- Arbitrary code execution on Non-
PAC device

- Race Conditions

: : User-Space Memory mappin
» Kernel Pointer Leaking P y mapping

- Bypass KASLR [il

Kernel Memory
- Assist Heap feng shui Kernel Pointers

@» zecOps

AppleAVE2 (2017)

In 2017, Apple "patched" bunch of AVE bugs

AVEVideoEncoder

Available for: iPhone 5 and later, iPad 4th generation and later, and iPod touch 6th

generation
Impact: An application may be able to gain kernel privileges

Description: Multiple memory corruption issues were addressed with improved
memory handling.

CVE-2017-6989: Adam Donenfeld (@doadam) of the Zimperium zLabs Team
CVE-2017-6994: Adam Donenfeld (@doadam) of the Zimperium zLabs Team
CVE-2017-6995: Adam Donenfeld (@doadam) of the Zimperium zLabs Team
CVE-2017-6996: Adam Donenfeld (@doadam) of the Zimperium zLabs Team
CVE-2017-6997: Adam Donenfeld (@doadam) of the Zimperium zLabs Team
CVE-2017-6998: Adam Donenfeld (@doadam) of the Zimperium zLabs Team
CVE-2017-6999: Adam Donenfeld (@doadam) of the Zimperium zLabs Team

Entry updated May 17, 2017

@» zecOps

@» zecOps

Adam Donenfeld | 10S | Jul202017 |

As part of zLab’s platform research team, I've tried to investigate an area of the kernel
that wasn't thoroughly researched before. After digging into some of Apple’s closed-
source kernel modules, one code chunk led to another and I've noticed a little-known
module, which I've never seen before, called AppleAVE.

AppleAVE was written neglecting basic security fundamentals, to the extent that the
vulnerabilities described below were sufficient to pwn the kernel and gain arbitrary RW
and root. Needless to say, due to the defragmentation of Apple’'s codebase for iOS,
every i0OS device running 10.3.1 or lower is currently vulnerable.

I've responsibly disclosed the vulnerabilities and Apple issued a security patch.

Apple’s recent security patch that was shipped along with iOS 10.3.2, addresses 8
vulnerabilities | discovered: one vulnerability in the |IOSurface kernel extension the
other 7 in AppleAVEDriver.kext.

These vulnerabilities would allow elevation of privileges which ultimately can be used
by the attacker to take complete control over affected devices.

@» zecOps

AppleAVE?2

At first glance, this driver looks quite complicated to me.

| estimate that it's gonna take a week of reverse engineering
work to learn the internal and write testing code.

o “Apple must have reinforced this driver to a very secured
level after Adam's discovery”

> "S0 yeah, it's not worth spending a week on this"

10

@» zecOps

AppleAVE?2

Apple Is a company ran and operated by people

Someone who works for Apple read our report and did the
patching work

O Sometimes people are lazy, we don't want to put effort
beyond necessary

> Especially when effort is not being appreciated

11

@» zecOps

AppleAVE?2

Apple Is a company ran and operated by people

Someone who works for Apple read our report and did the
patching work

O Sometimes people are lazy, we don't want to put effort
beyond necessary

> Especially when effort is not being appreciated

Adam Donenfeld ® 22?2 ®

12

@» zecOps

AppleAVE?2

Fix Solutions

1. Simply block the access from app to this driver

2. Carefully inspect any code interactive with the mapped

memory; Design security mechanisms to Counter-
Exploitation

13

1. Simply block the access from
app to this driver

2. Carefully inspect any code
interactive with the mapped
memory; Design security
mechanisms to Counter-
Exploitation

@» zecOps

AppleAVE?2

Get the job done effortlessly!

Shift security responsibility
to sandbox

Extra effort is
Thankless!

14

@» zecOps

Always check how the
bug has been fixed

Especially when you are the person who submitted the report!!
You know this vulnerabillity inside and out.

You can get huge return for being little more responsible!

15

AppleAVE2 (2019)

Kernel Pointer Hijacking

Free arbitrary kernel memory
Empty arbitrary kernel memory Kernel Memory

_ _ Kernel Pointers
Arbitrary code execution on Non-PAC

_ Kernel A:
device :

User-Space Memory mapping

Race Conditions
Kernel Pointer Leaking : PRSI
BypaSS KASLR Kernel Polnters

Assist Heap feng shui

This is why we love Sandb

@» zecOps

16

AppleAVE2 (2020)

Kernel Pointer Hijacking

Free arbitrary kernel memory
Empty arbitrary kernel memory Kernel Memory

_ _ Kernel Pointers
Arbitrary code execution on Non-PAC

_ Kernel A:
device :

User-Space Memory mapping

Race Conditions

Kernel Pointer Leaking : Kernel Memory

@» zecOps

Kernel Polnters

Bypass KASLR

Assist Heap feng shui

Jailbreak i10S 1
$100k Apple Security

17

@» zecOps

AppleAVE2 (2021)

Apple introduced AppleAVE2 on ARM-based macOS
Quite a lot changes

It's fully symbolized
O Ease reverse engineering work A TON!

Note that sandbox is hot mandatory on macOS
O We can access AppleAVEZ2 directly!

18

@» zecOps

AppleAVE2 (2021)

A big trunk of code deal with Framelnfo->Info Type moved
o From AppleAVE2UserClient::SetSessionSettings
o To AppleAVEZ2Driver::EnqueueGated

Introduce doubly linked list to manage clientbuf objects (AVE_DLList_%)

o Perhaps it was meant to mitigate a technique | used on 13.7 Jailbreak —
hijacking clientbuf structure

19

AppleAVE2 (2021)
Kernel Pointer Hijacking
Free arbitrary kernel memory

Empty arbitrary kernel memory Kernel A:

Arbitrary code execution on Non- User-Space i Memory mapping
PAC device :

Race Conditions Kernel Memory

Kernel Polnters

Kernel Pointer Leaking
Bypass KASLR

Assist Heap feng shuil

Kernel R/W Primitives
Bypass KASLR

@» zecOps

20

AppleAVE2 (2021)

* Introduce doubly linked list to manage
clientbuf objects (AVE_DLList_¥)

Lots of new code

O Provides new primitives that are

@» zecOps

powerful enough to achieve kernel
R/W and bypass KASLR

|| AVE_DLList_Init(_S_AVE_DLNode *)

7| AVE_DLList_Empty(_S_AVE_DLNode *)

7| AVE_DLList_Check(_S_AVE_DLNode *)

7| AVE_DLList_Clear(_S_AVE_DLNode *)

7| AVE_DLList_PopFront(_S_AVE_DLNode *)

7| AVE_DLList_Size(_S_AVE_DLNode *)

|| AVE_DLList_Prev(_S_AVE_DLNode *)

|| AVE_DLList_Next(_S_AVE_DLNode *)

|z| AVE_DLList_InsertBefore(_S_AVE_DLNode *,_S_
|z| AVE_DLList_InsertAfter(_S_AVE_DLNode *,_S_A
7| AVE_DLList_Erase(_S_AVE_DLNode *)

|| AVE_DLList_Reverse(_S_AVE_DLNode *)

7| AVE_DLList_Front(_S_AVE_DLNode *)

7| AVE_DLList_Back(_S_AVE_DLNode *)

| 7| AVE_DLList_PushFront(_S_AVE_DLNode *,_S_A

| 7| AVE_DLList_PushBack(_S_AVE_DLNode *,_S_AV
7| AVE_DLList_PopBack(_S_AVE_DLNode *)

| 7] AVE_DLList_Splice(_S_AVE_DLNode *,_S_AVE_D
| 7| AVE_DLList_Swap(_S_AVE_DLNode *,_S_AVE_D
|| AVE_DLList_Begin(_S_AVE_DLNode *)

|| AVE_DLList_End(_S_AVE_DLNode *)

7| AVE_DLList_RBegin(_S_AVE_DLNode *)

21

@» zecOps

AppleAVE2 (2021)

The first vulnerability that caused memory corruption and led to the formation of
kernel read primitives

- The trigger path:

AppleAVE2UserClient::externalMethod
—> AppleAVE2UserClient::_SetSessionSettings
-> AppleAVE2UserClient::SetSessionSettings
—> AppleAVE2Driver: :Enqueue
—-> AppleAVE2Driver: :EnqueueGated

—-> AppleAVE2Driver: :Board
—-> AppleAVE2Driver: :ProcessReady
—> AppleAVE2Driver::ProcessReadyCmd
—-> AppleAVE2Driver: :EncodeFrame

The actual vulnerabillity is located in AppleAVE2Driver::EncodeFrame

22

AppleAVE2 (2021)

The actual vulnerabillity is located in AppleAVE2Driver::EncodeFrame

{

while (1)
{
v27 = %v25;
if (!'x(_BYTE %) (v10 + v27 + 432))

break;
v28 = x(signed int x) (userKernel_sharedMapping + 168); // (1)
*(_QWORD x)(clientbuf + 8 *x v28 + 158920) = userKernel_sharedMapping; // (2)
*x(_DWORD %|) (4 * v28 + 158920 + clientbuf + 136) = 2;

++%Vv26;
*(_QWORD x) (userKernel_sharedMapping + 5976) = v24;

v29 = AppleAVE2Driver::IMG_V_EncodeAndSendFrame (
v1o,
(clientbuf x)clientbuf,
userKernel_sharedMapping,
(uint64_t *) (userKernel_sharedMapping + 5976));

(1) v28 was read from a user-kernel shared mapping memory. The attacker could give v28 any
value due to lack of size or overflow checks.

 (2) Then v28 is used as a vital offset to overwrite a specific location in clientbuf, because there
IS no size or overflow checks. The attacker could insert the userKernel_sharedMapping pointer
to any location of clientbuf by controlling the value of v28

@» zecOps

23

 How the kernel read primitive were built

There is a function called AppleAVE2Driver::ProcessReady in the vulnerability trigger path:

v9 = &clientbuf->cmd_nodelList;
v10 = AVE_DLList_Front(&clientbuf->cmd_nodeList);
if (!'vie)

return 0;
vlie = v10;
do
{

if (clientbuf->flag_skipCmd)

{

AppleAVE2Driver::SkipCmd(v8, clientbuf, v16, v11, v12, v13, v14, v15, v18, v19, v20, SHIDWORD(v20), v21);

by

else

{
if (*x(_DWORD x)&clientbuf->pad7[29] >= x(_DWORD x)&clientbuf->pad7[25])
return 0;
AppleAVE2Driver::ProcessReadyCmd((__int64)v8, clientbuf, v16); // (1)
b
AVE_DLList_PopFront(v9);
AVE_B1kPool::Free(x(AVE_BlkPool xx)&clientbuf->pad4[40], v16);
v1l6 = (cmdbuf *)AVE_DLList Front(v9);
b
while (v16);

(1) The memory corruption occurrence happened in AppleAVE2Driver::ProcessReadyCmd, which allows
us to insert a pointer into anything that's in range of clientbuf. The pointer points to a kernel memory
that's mapped into the userspace, and we can control and modify its content anytime. We leverage this
capability to overwrite clientbuf->cmd_nodeList pointer, directly control the value of v16, then in the next
iteration, v16 gets pass to AppleAVE2Driver::ProcessReadyCmd

@» zecOps

24

 How the kernel read primitive were built

AppleAVE2Driver::ProcessReadyCmd(this, clientbuf, v16):
{

contorl_v = x(_QWORD *)(v16 + 48);

result = AppleAVE2Driver::PreInitCreateContext(OLL, clientbuf, contorl_v);

AppleAVE2Driver::PreInitCreateContext // Then read 4 bytes off of contorl_v and send it to userland process:

{

AppleAVE2UserClient: :SendFrame(
(AppleAVE2UserClient *x)v9->connected_userClient,
(_DWORD x) (contorl_v + 4),
@xCDCDCDCD,
oLL,
*x(unsigned int x)(contorl_v + 24),
oLL);

« Kernel Read Primitive: AppleAVE2Driver::PrelnitCreateContext read 4 bytes off of contorl_v and
send it to our userland process

» The triggering of this vulnerability happens in the function
Trigger_AppleAVE2_Vuln_Overwriting_ptr() as part of my exploit code

@» zecOps

25

@» zecOps

AppleAVE2 (2021)

The second vulnerability allows us to write a pointer into any kernel address

- The trigger path:

AppleAVE2UserClient: :externalMethod
—-> AppleAVE2UserClient::_Close
-> AppleAVE2UserClient::Close
-> AppleAVE2Driver::close

—> AppleAVE2Driver::closeGated
—-> AppleAVE2Driver: :AVE_DestroyContext
—-> AVE_SurfaceMgr::DestroySurface
-> AVE _DLList Erase

The actual vulnerability is located in AppleAVE2Driver::AVE_DestroyContext

26

 The second vulnerability allows us to write a pointer into any kernel address

——— In AppleAVE2Driver: :AVE_DestroyContext:

userKernel_sharedMapping = KernelFrameQueue::getRequestedSpot((KernelFrameQueue x)v10, v12);
vld = x(_QWORD *) (userKernel_sharedMapping + 5976);

if (vid)

{

AVE_SurfaceMgr::DestroySurface(*x(_QWORD x)&clientbuf->pad[20], v14); // (1)
*(_QWORD x) (userKernel_sharedMapping + 5976) = 0;

¥

++v12;

v10 = x(_QWORD *)(v9 + 112);

* (1) The value of v14 was read from userKernel_sharedMapping, we can pass any value
to v14 and result in calling

@» zecOps

27

 The second vulnerability allows us to write a pointer into any kernel address

——— In AVE_SurfaceMgr::DestroySurface (this, v14)
{

v9 = (struct psNode x)AVE_Surface::GetMgrNode((AVE_Surface x) v14);
AVE_DLList_Erase(v9); // v9 is under our control

——— Proceed to AVE_DLList_Erase (struct psNode xal)

{
if (tal)
{

panic("\"psNode != NULL\"");
}
v6 = al->psNode_prev;
if (!al->psNode_prev)

{

panic("\"psNode->psPrev != NULL\"");

}

v7 = al->psNode_next;

if (v7)

{
vb—>psNode_next = v7;
al->psNode_next->psNode_prev = v6; // (2)
return;

}

}

* (2) If we manage to get al point to a kernel memory that we have control over its content, we can
form an arbitrary kernel write primitive with this line of code

* The triggering of this vulnerability happens in the function remove_client2() as part of my exploit code

@» zecOps 28

@» zecOps

Bug FiXx

Technically, they are not “fixed”
- Apple did not take action on the overflow problem

New functions:
- AVE_CopyFramelnfoFromEx
- AVE_CopyFramelnfoToEx

29

192 }

193 memcpy((void *)(v33 + v26), (const void *)(v33 + 22504), 0x11820ulLL);

194 memcpy((char *)this l->current clientbuf + v27, (char *)this l->current clientbuf + 94216, O0x1EDCulLL);
195 memcpy ((char *)this l->current clientbuf + v28, (char *)this l->current clientbuf + 102116, 0x259CuLL);
196 memcpy((char *)this l->current cllentbuf + v29, (char *)this l->current “clientbuf + 111744, 0x5164ulLL);
197 v39 (char *)this l->current clientbuf;

198 v36 &v3i9[v3i0];

199 v37 v39 4+ 132580;

200 v38 26132LL;

201 goto LABEL 22;

202)

203 LABEL 24:

204 wv40 = this l->provider;

205/ w4l = *(DWORD *)(v46 + 4);

206 _ _asm { AUTIBSP }

207 if ((B8 ~ 2 * B8) & 0x4000000000000000LL)

208 ___break(0xC471u);

209 return AppleAVE2Driver::Enqueue(v40, (IOService *)this 1, v4l, (void *)vie);
210}

macOS Big Sur 11.1 AppleAVE2UserClient::Prelnit

189 }
190 memcpy(&v32[v27], v32 + 5698, 0x11820ulL);
191 memcpy((char *)vli0O->current cllentbuf + v28, (char *)vliO->current clientbuf + 94504, Ox1EDCulLL);
192 memcpy((char *)vli0O->current clientbuf + v29, (char *)vlO->current clientbuf + 102404 0x259CulL);
193 memcpy((char *)vliO->current clientbuf + v30, (char *)vliO->current clientbuf + 112032, 0x5164ulL);
194 v38 = (char *)vliO->current clientbuf;
195 v35 = &v38[v3l];
196 v3i6 = v38 + 132868;

That should solve the FHESRECE
198 goto LABEL 22;

199 }

race Condition prOblem 382LAZB\%:ég;yFrameInfoFromEx((_int64)v22, *(unsigned int *)(v45 + 4));

202 wv39 = vl0->provider;

203| v40 = *(unsigned int *)(v45 + 4);

204 _ asm { AUTIBSP }

205 if ((B8 ® 2 * BB) & 0x4000000000000000LL)
206 __break(0xC471u);

207 return AppleAVE2Driver::Enqueue((int64)v39);
208 |}

macOS Big Sur 11.4 AppleAVE2UserClient::Prelnit

@» zecOps

Apple Security Bounty

* | reported it in February, 2021
* The submission includes
O Detailed technical description of the vulnerability
O A proof-of-concept exploit that can get you a root shell
« Apple decided to award me $52,500
- Apple is being generous

@» zecOps

31

@» zecOps

Sandbox

A simpler solution for patching a vulnerabillity
Block the access from sandbox

O Shift security responsibility to sandbox

Vulnerable Driver Vulnerable Driver Vulnerable Driver
AppleAVE AppleAVE AppleAVE
erne

32

@» zecOps

Negligence Outside Sandbox

Back then, security outside of sandbox often
got overlooked

- Maybe it still is now, it's hard to tell

O Our perception is limited by the time we
are living In

33

__int64 _ fastcall ProvInfolIOKitUserClient::ucGetEncryptedSeedSegment(__ int64 al, unsigned int *a2, int64 a3, _ inté

__int64 v8; // x0
__int64 v9; // x19

if (a2)
{

vB = (*(_ int64 (_ fastcall **)(_QWORD, OQOWORD, OWORD, char *, int64, char *, OQWORD, int64))(**(_QWORD **)(a

*(_QWORD *)(al + 216),
*a2, - -
(hnsionea __incis +yaz + 3, CVE-2019-7287

(char *)a2 + 6,
a3,
(char *)a2 + 54,

g0, * Missing size check when processing input

v9 = v8;
if ((DWORD)vE)

IOLog(u u n
"[ProvInfoIOKitUserClient: :ucGetEncryptedSeedSegment] ProvInfolIOKit::getEncryptedSeedSegment returned %d\n", d ata I n P rOV I n fO I O Klt l ' Se r< : I I e nt

vE);
}

else

IOLog (" [ProvInfoIOKitUserClient: :ucGetEncryptedSeedSegment] Error: null pointer for input structure\n");
v9 = 0xE00002C2LL;

}

return v9;

__int64 __ fastcall ProvInfoIOKitUserClient::ucGetEncryptedSeedSegment(__int64 al, unsigned int *a2, _ inté64 a3,

__int64 v8; // x19

char *v9; // x0

__int64 v10; // x0

__inté64 v12; // [xsp+0h] [xbp-20h]

if (la2)

C s - omsovoozcaus, According to GPO, this was exploited in-the-wild

= "[ProvInfolOKitUserClient: :ucGetEncryptedSeedSegment] Error: null pointer for input structure\n”;
goto LABEL 7;

combined with a SBX (CVE-2019-7286)

= 0xE00002C2LL;
= "[ProvInfoIOKitUserClient: :ucGetEncryptedSeedSegment] Error: bad input structure lengths\n";
ABEL 7:

IGLog (v, Reference: https://www.antidOte.com/blog/19-02-23-ios-kernel-

return vg;

vl0 = (*(__int64 (__ fastcall **)(_QWORD, OWORD, OWORD, char *, int64, char *))(**(_QWORD **)(al + 216) + Cve'2019'7287'mem0ry'COrrUpthﬂ-VU|nerabllltyhtml

*(_QWORD *)(al + 216),
*a2,
*((unsigned __ intlé *)a2 + 2),
(char *)a2 + 6,
a3,
(char *)a2 + 54);
v8 = v10;
if ((_DWORD)v1O0)
{
vli2 = v10;
v9 = "[ProvInfoIOKitUserClient::ucGetEncryptedSeedSegment] ProvInfoIOKit::getEncryptedSeedSegment returned
goto LABEL 7;
}

return vg;

The vulnerability is that the size argument to memmove is completely attacker controlled and not

checked. This leads to kernel heap corruption.

@» zecOps

iokit-open
iokit-open
iokit-open
iokit—-open
iokit-open
iokit-open
iokit-open
iokit-open
iokit—-open
iokit-open
iokit-open
iokit-open
iokit-open
iokit—-open
iokit-open
iokit-open
iokit-open
iokit-open
10Kk1t-open
iokit-open
iokit—-open
iokit-open
iokit—-open
iokit-open
iokit-open
iokit—-open
iokit-open
iokit-open
iokit-open

iokit-o
iokit-open
iokit—open

deny(1) iokit-open AUCUserClient // BAD!
deny(1) iokit-open AppleAOPAudioUserClient // BAD!
deny(1) 1ok1t—open AppleAOPV01ceTrlggerUserCllent // BAD!

AppleBasebandUserClient // BAD! Unsupported/Unimp
AppleCredentialManagerUserClient
AppleEffaceableStorageUserClient // BAD! Require Root
AppleFirmwareUpdateUserClient // BAD! Require entitlement
AppleFirmwareUpdateUserClient // BAD! Require entitlement
AppleHIDTransportBootloaderUserClient // BAD! Require entitlement
AppleHIDTransportDeviceUserClient // BAD! Require entitlement
AppleHIDTransportInterfaceUserClient // BAD! Require entitlement
AppleMobileApNonceUserClient // BAD! Require root
AppleMobileFileIntegrityUserClient

AppleNVMeUpdateUC

ApplePMPUserClient // BAD! Require root

ApplePPMUserClient // Analyzing

AppleSMCClient

AppleSMCWirelessChargerUserClient // Analyzing
AppleSPUAppDriverUserClient // BAD!

App leSPUHapticsAudioUC

AppleSPUProflleDr1verUserC11ent // Wow! Info Leak

AppleStockholmControlUserCllent // BAD! Too little stuff
I0AESAcceleratorUserClient
I0AccessoryIDBusUserClient // BAD!
I0AccessoryManagerUserClient // Analyzing
I0AudioCodecsUserClient
IODARTMapperClient // Analyzing
I0OReportUserClient
I0TimeSyncClockManagerUserClient
I0TimeSyncDomainUserClient
IOT1meSynchTPManagerUserCllent

- Nl
ProvInfoIOK1tUserC11ent // Wow!
RootDomainUserClient
com apple dr1ver Fa1rP1ayIOK1tUserC11ent

My checklist for drivers that cannot be reached from inside the sandbox, at
the time of I0S 12.

CVE-2019-8795

CVE-2019-8794

CVE-2019-7287

Still Oday ?

35

» :.clientClose race condition in com_apple_driver_KeyDeliverylOKitUserClientMSE

KEXT_0BJ :skskskkkkkk 966 skkkkkkk
(OxfffffffOo088041b0)—->0SMetaClass:0SMetaClass call 4 args list
X0:0xfffffff00921d7b0
x1l:com_apple_driver_KeyDeliveryIOKitUserClientMSE
x2:0xfffffffo091lefde8

x3:0xf0

vtable start from addr Oxfffffffe07a7d4b8
Inheritance relationship: IOUserClient->I0Service->I0RegistryEntry->0SObject

override:
override:
override:
override:
override:
override:
override:
override:
override:

I0UserClient_destructorl loc:0xfffffffo07a7d4b8 imp:0xfffffff008803d6C
I0UserClient_destructor2 loc:0xfffffffe07a7d4cO imp:0xfffffff008803d70
I0UserClient_getMetaClass loc:0xfffffffo07a7d4f0 imp:0xfffffff008803d88
I0Service_start loc:0xfffffffo07a7d768 imp:0xfffffffo08803e7c
I0Service_stop loc:Oxfffffff007a7d770 imp:0xfffffffo08803ed0d
I0UserClient initWithTask loc:0xfffffffe07a7dale imp:oxfffffff008803e30

I0UserClient clientClosel loc:0xfffffffo07a7dal8 imp:0xfffffff008803ee0

I0UserClient_clientDied loc:0xfffffffo07a7da20 imp:oxfffffff0e8803f14
I0UserClient_getTargetAndMethodForIndex loc:0xfffffffe07a7da68 imp:0xfffffffo08803de4d

» Lead to overwriting of physical memory pages with controlled data!

@» zecOps

36

« ::clientClose race condition could apply to all IOKit drivers

- Setup two threads to race, one is calling ::externalMethod, and the
other one is closing the UserClient connection (it
triggers ::clientClose)

* |t was popular back in Yosemite era, while kernel null-reference still
IS exploitable

- | MISS THAT TIME!

@» zecOps

37

IOReturn __ cdecl com apple driver KeyDeliveryIOKitUserClientMSE clientClose
{

if (*(QWORD *)&this->pad[216])
*(_OWORD *)&this->pad[216] = OLL; // ->owner task

*(QWORD *)&this->pad[208] = OLL;
((void (*)(void))this->v->I0Service terminate)();
return 0;

1. ::ClientClose reset ->owner task to NULL

static IOMemoryDescriptor * withAddressRange(
mach_vm_address_t address,
mach_vm_size_t length,
I00OptionBits options,
task_t task);

@function withAddressRanges
QPabstract Create an IOMemoryDescriptor to describe one or more virtual ranges.
@discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of an array of virtual memory ranges eac
specified source task. This memory descriptor needs to be prepared before it can be used to extract data from the memory described.
@param ranges An array of IOAddressRange structures which specify the virtual ranges in the specified map which make up the memory tg
IOAddressRange is the 64bit version of IOVirtualRange.
@param rangeCount The member count of the ranges array.
@param options
kIOMemoryDirectionMask (options:direction) This nibble indicates the I/0 direction to be associated with the descriptor, which mg
operation of the prepare and complete methods on some architectures.
kIOMemoryAsReference For options:type = Virtual or Physical this indicate that the memory descriptor need not copy the ranges 4
local memory. This is an optimisation to try to minimise unnecessary allocations.
@param task The task each of the virtual ranges are mapped into. Note that unlike IOMemoryDescriptor::withAddress(), kernel_task memq
explicitly prepared when passed to this api. The task argument may be NULL to specify memory by physical address.
Presult The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */

3. task=NULL is to specify memory by
physical address

@» zecOps

void __cdecl com_apple driver_ KeyDeliveryIOKitUserClientMSE_sub_ FFFFFFF008803F60 (

__int64 v2; // x2

__int64 output stru 1; // x19
void **input stru 1; // x22
com_apple driver KeyDeliveryIOKitUserClientMSE *v5; // x23
IOMemoryDescriptor *vé6; // x0
IOMemoryDescriptor *v7; // x20
unsigned int v8; // w26
IOMemoryMap *v9; // x0
IOMemoryMap *v10; // x21
IOMemoryDescriptor *vll;
IOMemoryDescriptor *vl12;
IOMemoryMap *v13; // x0
IOMemoryMap *vl4; // x25
__int64 v15; // %26

__int64 v16; // x0

output stru 1 = v2;
input stru 1 = (void **)a2;
v5 this;
v6 IOMemoryDescriptor: :withAddressRange (
*(void **)a2,
(void *)*((unsigned int *)a2 + 2),
(void *)2, kIODirectionOut/Writing
*(void **)&this->pad[216]); ->owner task
if (lve)
goto LABEL 12;
v7 v6;
v8 0xE00002BD;
v9 v6=->v->I0MemoryDescriptor map(v6, 0x1000u);
if (v9)

2. In one of the external method, it created a
memory descriptor instance for memory
writing with ->owner_task

If race succeeded, ->owner_task will be
NULL

38

Some security highlights about M1 and macOS 11;

« 1. It's difficult to achieve kernel code execution with Kernel PAC that comes with the M1 chip

« 2. Important kernel variables such as csr_config that directly affect CSR/SIP policies are now
stored in the read-only segment. Just as kernel code, they are protected by KTRR/CTRR from
being modified even after the attacker gain kernel R/W abillity. Intel-based Macs do not have this
security feature. Read pmap.c and arm_vm_.init.c to learn more.

» 3. AuxKC prevents attackers from loading custom kexts immediately after the kernel is exploited.
The custom kext gives attackers the ability to deploy an advanced and undetectable payload.

» According to Apple Platform Security PDF. Starting with macOS 11, kext can't be loaded into the
kernel on demand without an occurrence of a system reboot. which was not needed in the past.

4. APFS snapshot, more steps are needed to modify the root file system.

@» zecOps

39

@» zecOps

Thank you

cccecec3742@protonmail.com

mailto:ccccc3742@protonmail.com
mailto:ccccc3742@protonmail.com

