
Special thanks to Zuk Avraham (@ihackbanme)

#OBTS v4.0 | Maui, Hawaii, USA | Sept 30th, 2021

@08Tc3wBB | ZecOps Mobile EDR

Kernel Exploitation
on Apple's M1 Chip

2

AppleAVE2

• It's a IOKit driver runs in kernel space
• Handles video encoding in formats: H264, HEVC, etc
• Only for ARM-based devices

- iOS
- iPadOS
- M1 Chip Macs

3

AppleAVE2

• Before Apple introduces the M1 chip (Nov, 2020)
- Only iOS
- Closed source code, and most symbols have been

deleted
• SBX 0day or jailbroken device is required to debug this

driver
- Less auditing eyes ;)

4

AppleAVE2
• Researcher Adam found a lot of vulnerabilities in this driver back in 2017
• Apple didn't bar access to AppleAVE2 from sandbox back then

5

These vulnerabilities discovered by Adam in 2017 are
very straightforward and easy to trigger

AppleAVE2

6

• Kernel Pointer Hijacking
- Free arbitrary kernel memory
- Empty arbitrary kernel memory
- Arbitrary code execution on Non-

PAC device
- Race Conditions

• Kernel Pointer Leaking
- Bypass KASLR
- Assist Heap feng shui

AppleAVE2 (2017)

7

• Kernel Pointer Hijacking
- Free arbitrary kernel memory
- Empty arbitrary kernel memory
- Arbitrary code execution on Non-

PAC device
- Race Conditions

• Kernel Pointer Leaking
- Bypass KASLR
- Assist Heap feng shui

AppleAVE2 (2017)
This is 2017!

8

In 2017, Apple "patched" bunch of AVE bugs

AppleAVE2 (2017)

9

10

• At first glance, this driver looks quite complicated to me.
- I estimate that it's gonna take a week of reverse engineering

work to learn the internal and write testing code.
◦ “Apple must have reinforced this driver to a very secured

level after Adam's discovery”
‣ "So yeah, it's not worth spending a week on this"

AppleAVE2

11

• Apple is a company ran and operated by people
- Someone who works for Apple read our report and did the

patching work
◦ Sometimes people are lazy, we don't want to put effort

beyond necessary
‣ Especially when effort is not being appreciated

AppleAVE2

12

• Apple is a company ran and operated by people
- Someone who works for Apple read our report and did the

patching work
◦ Sometimes people are lazy, we don't want to put effort

beyond necessary
‣ Especially when effort is not being appreciated

AppleAVE2

Who found the bug?
Adam Donenfeld 😊

Who fixed the bug?
??? 😶

13

AppleAVE2

• Fix Solutions
1. Simply block the access from app to this driver
2. Carefully inspect any code interactive with the mapped

memory; Design security mechanisms to Counter-
Exploitation

14

1. Simply block the access from
app to this driver Shift security responsibility

to sandbox

Get the job done effortlessly!

Extra effort is
Thankless!

2. Carefully inspect any code
interactive with the mapped
memory; Design security
mechanisms to Counter-
Exploitation

AppleAVE2

15

Always check how the
bug has been fixed

• Especially when you are the person who submitted the report!!
You know this vulnerability inside and out.

• You can get huge return for being little more responsible!

16

Kernel Pointer Hijacking
✔ Free arbitrary kernel memory
✔ Empty arbitrary kernel memory
✔ Arbitrary code execution on Non-PAC

device
✔ Race Conditions

Kernel Pointer Leaking
✔ Bypass KASLR
✔ Assist Heap feng shui

AppleAVE2 (2019)

This is why we love Sandbox Escape

17

Kernel Pointer Hijacking
✘ Free arbitrary kernel memory
✔ Empty arbitrary kernel memory
✘ Arbitrary code execution on Non-PAC

device
✔ Race Conditions

Kernel Pointer Leaking
✔ Bypass KASLR
✔ Assist Heap feng shui

AppleAVE2 (2020)

Jailbreak iOS 13
$100k Apple Security Bounty

18

• Apple introduced AppleAVE2 on ARM-based macOS
- Quite a lot changes

- It's fully symbolized
◦ Ease reverse engineering work A TON!

- Note that sandbox is not mandatory on macOS
◦ We can access AppleAVE2 directly!

AppleAVE2 (2021)

19

- A big trunk of code deal with FrameInfo->InfoType moved
◦ From AppleAVE2UserClient::SetSessionSettings
◦ To AppleAVE2Driver::EnqueueGated

- Introduce doubly linked list to manage clientbuf objects (AVE_DLList_*)
◦ Perhaps it was meant to mitigate a technique I used on 13.7 Jailbreak —

hijacking clientbuf structure

AppleAVE2 (2021)

20

Kernel Pointer Hijacking
✘ Free arbitrary kernel memory
✘ Empty arbitrary kernel memory
✘ Arbitrary code execution on Non-

PAC device
✔ Race Conditions

Kernel Pointer Leaking
✘ Bypass KASLR
✘ Assist Heap feng shui

AppleAVE2 (2021)

✔ Kernel R/W Primitives
✔ Bypass KASLR

21

• Introduce doubly linked list to manage
clientbuf objects (AVE_DLList_*)

- Lots of new code
◦ Provides new primitives that are

powerful enough to achieve kernel
R/W and bypass KASLR

AppleAVE2 (2021)

22

• The first vulnerability that caused memory corruption and led to the formation of
kernel read primitives
- The trigger path:

• The actual vulnerability is located in AppleAVE2Driver::EncodeFrame

AppleAVE2 (2021)

23

• The actual vulnerability is located in AppleAVE2Driver::EncodeFrame

• (1) v28 was read from a user-kernel shared mapping memory. The attacker could give v28 any
value due to lack of size or overflow checks.

• (2) Then v28 is used as a vital offset to overwrite a specific location in clientbuf, because there
is no size or overflow checks. The attacker could insert the userKernel_sharedMapping pointer
to any location of clientbuf by controlling the value of v28

AppleAVE2 (2021)

24

• How the kernel read primitive were built

• (1) The memory corruption occurrence happened in AppleAVE2Driver::ProcessReadyCmd, which allows
us to insert a pointer into anything that's in range of clientbuf. The pointer points to a kernel memory
that's mapped into the userspace, and we can control and modify its content anytime. We leverage this
capability to overwrite clientbuf->cmd_nodeList pointer, directly control the value of v16, then in the next
iteration, v16 gets pass to AppleAVE2Driver::ProcessReadyCmd

25

• How the kernel read primitive were built

• Kernel Read Primitive: AppleAVE2Driver::PreInitCreateContext read 4 bytes off of contorl_v and
send it to our userland process

• The triggering of this vulnerability happens in the function
Trigger_AppleAVE2_Vuln_Overwriting_ptr() as part of my exploit code

26

AppleAVE2 (2021)
• The second vulnerability allows us to write a pointer into any kernel address

- The trigger path:

• The actual vulnerability is located in AppleAVE2Driver::AVE_DestroyContext

27

• The second vulnerability allows us to write a pointer into any kernel address

• (1) The value of v14 was read from userKernel_sharedMapping, we can pass any value
to v14 and result in calling

28

• The second vulnerability allows us to write a pointer into any kernel address

• (2) If we manage to get a1 point to a kernel memory that we have control over its content, we can
form an arbitrary kernel write primitive with this line of code

• The triggering of this vulnerability happens in the function remove_client2() as part of my exploit code

29

Bug Fix

• Technically, they are not “fixed”
- Apple did not take action on the overflow problem

• New functions:
- AVE_CopyFrameInfoFromEx
- AVE_CopyFrameInfoToEx

30

That should solve the
race condition problem

macOS Big Sur 11.1 AppleAVE2UserClient::PreInit

macOS Big Sur 11.4 AppleAVE2UserClient::PreInit

31

Apple Security Bounty

• I reported it in February, 2021
• The submission includes
◦ Detailed technical description of the vulnerability
◦ A proof-of-concept exploit that can get you a root shell

• Apple decided to award me $52,500
- Apple is being generous

32

Sandbox
• A simpler solution for patching a vulnerability

- Block the access from sandbox
◦ Shift security responsibility to sandbox

33

Negligence Outside Sandbox

• Back then, security outside of sandbox often
got overlooked

- Maybe it still is now, it's hard to tell
◦ Our perception is limited by the time we

are living in

34

CVE-2019-7287
• Missing size check when processing input

data in ProvInfoIOKitUserClient

Reference: https://www.antid0te.com/blog/19-02-23-ios-kernel-
cve-2019-7287-memory-corruption-vulnerability.html

According to GP0, this was exploited in-the-wild
combined with a SBX (CVE-2019-7286)

35

My checklist for drivers that cannot be reached from inside the sandbox, at
the time of iOS 12.

CVE-2019-8795

CVE-2019-8794

CVE-2019-7287

Still 0day ?

36

com_apple_driver_KeyDeliveryIOKitUserClientMSE 0Day

• ::clientClose race condition in com_apple_driver_KeyDeliveryIOKitUserClientMSE
• Lead to overwriting of physical memory pages with controlled data!

37

com_apple_driver_KeyDeliveryIOKitUserClientMSE 0Day

• ::clientClose race condition could apply to all IOKit drivers
- Setup two threads to race, one is calling ::externalMethod, and the

other one is closing the UserClient connection (it
triggers ::clientClose)

• It was popular back in Yosemite era, while kernel null-reference still
is exploitable

- I MISS THAT TIME!

38

com_apple_driver_KeyDeliveryIOKitUserClientMSE 0Day

2. In one of the external method, it created a
memory descriptor instance for memory
writing with ->owner_task
if race succeeded, ->owner_task will be
NULL

1. ::ClientClose reset ->owner_task to NULL

3. task=NULL is to specify memory by
physical address

39

• 1. It's difficult to achieve kernel code execution with Kernel PAC that comes with the M1 chip
• 2. Important kernel variables such as csr_config that directly affect CSR/SIP policies are now

stored in the read-only segment. Just as kernel code, they are protected by KTRR/CTRR from
being modified even after the attacker gain kernel R/W ability. Intel-based Macs do not have this
security feature. Read pmap.c and arm_vm_init.c to learn more.

• 3. AuxKC prevents attackers from loading custom kexts immediately after the kernel is exploited.
The custom kext gives attackers the ability to deploy an advanced and undetectable payload.

• According to Apple Platform Security PDF. Starting with macOS 11, kext can't be loaded into the
kernel on demand without an occurrence of a system reboot. which was not needed in the past.

• 4. APFS snapshot, more steps are needed to modify the root file system.

Some security highlights about M1 and macOS 11:

ccccc3742@protonmail.com

Thank you

mailto:ccccc3742@protonmail.com
mailto:ccccc3742@protonmail.com

