Reverse Englneering
10S with FHIDA

By Christine Fossaceca

L@)

Oblecwt’rg Sea

Approved for Public Release; Distribution Unlimited. Public Release Case Number 21-2938. The author’s affiliation with The MITRE Corporation is provided for identification purposes only and is not intended to
convey or imply MITRE’s concurrence with, or support for, the positions, opinions or viewpoints expressed by the author. Copyright © 2021 The MITRE Corporation. All Rights Reserved.

Swhoami

* Senior Reverse Engineer @ The MITRE Corporation MITRE

(e
e Researcher @furiousmac Y (

* Dog Mom @ Honey

$ Wh O am :I_ Marion Marshalek @pinkflawd

e Advocate for Women in Cyber

women in
CYBERSECURITY

Wi
* CoHost @ ‘M‘%Ix

PODCAST

\ ol

DEBUGGER~FU

BLACKHOODIE ZOli8

"He piana iniTIATIVE

BELiEve & acmieye—TOGETHER

SN,
A8

Agenda

e About Frida
 How to Set it Up for iOS

* My methodologies + live demos of things you
can do! :)

* Methodology #1: Connect and Explore
* Methodology #2: Catch and Release
* Methodology #3: Python Baby!

* Hot Tool Tips &

* Conclusion + Questions?

FAIDA

Frida: a
brief
history

e Ole André V. Ravnas @oleavr %
e Researcher at NowSecure

* “Think of it as a library for
building debuggers”

* “Dynamic Instrumentation
Toolkit”

“Dynamic Instrumentation Toolkit”

Some function

« Static @ vs. Dynamic Y

* Instrumentation K describes
how you are handling the binary
itself.

* This is most useful for native
process debugging, because you
can break on specific areas in a
binary without having source
code

36 06 00 94 F3 03 00 AA
D 06 00 94 F4 03 00 AA
00 34 1F 20 03 D5
™00 94 08 20 8/n K2

e W

<. "5 00 94 ESQQ7 40 F9

IF 20 03 D5 28 A3 01 58
AE 05 00 94 FD 03 1D AA
21 00 80 52 28 06 00 94
00 63 04 58 lF 20 03 D5

1 E2 2. so r8 05 00 94
«8 03 00 29 EO 97 =™ °
1F 20 03 D5 E4 0.
v. "' 80 52 B3 0!
EO 03 13 An .. 22 =7 71
49 9E 01 58 29 01 40 F9
FD 7B 42 A9 F4 4F 41 A9

Inject before

Inject after

7C 05 00 94 FD 03 1D AA 6.ccccces oo snioniis

21 00 80 52 56 06 00 94
81 59 04 58 EO 03 13 AA
ne en an 77 E8 03 00 29
" e Al 30 1F 2o-vampp
0 52 05 01 80 52
0 94 EO 03 13 AA
1F 20 03 D5 E9 A4 01 =7
. ft tt Tl .. /b 42 A9
CO 03 5F D6 D6 05 00 94

08 01 40 F9 E8 07 00 F9
1F 06 00 94 F3 03 00 AA
40 03 00 34 1F 20 03 D5
41 55 04 58 FE 05 00 94

08 20 80 52 U ov ... 7?
veTmae3 D5 C3.5F 01 70
3 AA 22 00 80 52
RR N6 05 00 ok

. .+ v U3 D5
3F 01 08 EB A1l 00 00 54
FF C3 00 91 C0O 03 5F D6

- A=

Frida in general $.* Cellebrite

* Devices
* Frida can be used on MacOS, PC, or Linux
* Host PC can be target, or remote device (i.e. Android or iOS)
* Can even use it to debug Node.js processes!

e Applications or Native Processes
* For a great tutorial on reverse engineering iOS Apps, check out
* Or Begam’s (Cellebrite) DFRWS 2020 Frida Workshop! @shloopen

* iPhone 7,i0S 14.7.1
* Checkraln jailbreak
* Frida 15 (15.1.1) on MacOS

In this
Demo

Prepping your computer

*pip3 1nstall frida-tools

* Python 3.9 is the best right now

Notell You need the same version of Frida on
your computer and your device

Prepping vyvour 10S device: jailbreaking

1f youriPhone <= 1PhoneX:

use checkraln g!!!

else r Wl

use Altstore + uncOver

uo

(this 1s for jailbreaking 64 bit devices only!!)

Prepping your 10S device: get Cydia

 Normally it is included with your jailbreak, but if not, you can
download the .deb directly from the Cydia website

 Add Frida as a Source
* https://build.frida.re
* Download + Install Frida

Frida

from build.frida.re (Development)
lect JavaScript to explore iOS apps over USB.

Frida for

from build.frida.re (Development)
Inject JavaScript to explore iOS apps over USB.

Frida for A12+ devices

from build.frida.re (Development)
Inject JavaScript to explore iOS apps over USB.

- ~ frida-ps -U
PID Name
3566 @@ Calendar Quick Test
3014 Camera
1084 Cydia
3935 Find My
3160 InCallService
3182 Messages
3521 Phone
4337 Podcasts
3636 Safari
3541 Settings
224 Siri Search
4732 User Authentication (U means access remote device over USB)
3579 Wallet
4301 checkraln
104 ACCHWCompone
2337 ASPCarryLdg

e Sanity check with

frida —--version

frida-ps -U

T188C02a980@0e

Methodology #1: Connect and Explore

» frida frida -U bluetoothd
Frida 15.0.19 - A world-class dynamic instrumentation toolkit
Commands:
help -> Displays the help system
object? -> Display information about 'object’
exit/quit -> Exit
More info at https://frida.re/docs/home/

[1Phone: :bluetoothd]-> I

OS X Architecture

* A less aesthetically appealing (but accurate) description is:

CLI/Daemons GUI Apps

Public Frameworks

Private Frameworks

Darwin

Hardware

» Both OSes support CLI and GUI Apps

\ 74

Public Frameworks are those heavily documented by Apple

> “Libraries” in C or “Modules” in Frida

% Private Frameworks entirely undocumented, and disallowed

» Darwin is its own microcosmos of components

» Apple entirely controls hardware, both in OS X and iOS

< (C) 2012, 2019 Technologeeks.cD Thanks Jonathan Levin

Example:
bluetoothd

One of the biggest roadblocks right now is
there is no help page......

But, once you get the hang of it, it is actually
pretty easy to use.

Start by pressing TAB and you can see the
different capabilities of Frida. For example,
MATH is a class of mathematical constants and
functions that can be used in your scripts.

Process.enumerateModules
Process.enumerateRanges('rw’)

Script Hooking

Methodology #2: “Catch and
Release”

* You know how to find the load address +path of a particular library, but what if
you want to examine specific functions in that library?

* Objective C vs Non Objective C functions

Objective C Function

id _ _cdecl -[CBStackAddressMonitorBluetoothD description](CBStackAddressMonitorBluetoothD *self, SEL)

Regular Function

kern_return_t _ cdecl IOServiceOpen(io_service_t service, task_port_t owningTask, uint32_t type, io_connect_t *connect)

 frida-trace —U bluetoothd —m “*[* *Location]”
* frida-trace —U bluetoothd —i “*Location”

10S Zero Click AMNESTY

Exploit INTERNATIONAL

* First reported as Megalodon by
Amnesty International, and was
later reported as FORCEDENTRY by

CitizenLab

* Really awesome report by Trend
Micro’s Mickey Jin @patch1t ¥

* Series of GIFs that were maliciously
encoded PDFs

* So, how can you look into this too?

[-]
‘ a
%
{)
”. = l'
. Ly
[|

NLAB

rn

THEC

._I-l

TrendMicro/Amnesty Report

Thread 2 name: Dispatch queue: IMTranscoderNormalPriorityQueue
Tl\\-.‘.-\r‘ 2 Nyachaod:

)

CoreGraphics
CoreGraphics
;raphics
sGraphics
CoreGraphics
CoreGraphics
CoreGraphics
CoreGraphic
CoreGraphics

Ox181c6e228 __ZN11JBIG2Streaml7readTextRegionSegEjiijPjj + 908
Ox181c6e20c __ZN11IBIG2Streaml7readTextRegionSegEjiijPjj + 872
Ux18le6co/c __ZN11JBIGZSTreamlZreadsegmentskv + 1988
Bx181cb6be70 __ZN11JBIG2StreamSresetEv + 260

Bx181c¢T9f9c read rtesPvS_m + 10824

W N =

>~

_CGPDFSourc
tream_read_sectio

~ oo,

G — Core Graphics

Ox181067 Thumag R Feate + 112
Bx181¢ 26694 _create + 1748

CoreGraphics
ImageIO
ImageIO
ImageIO
ImageIO

Bx181lcBéebd
Bx181l Bfdd4
Bx181:92404
Bx181¢138fc

__Z19Create
__ZN14110_Reader_PDF22updateSourcePropertiesEP191I0ImageReadSessionP13II0DictionaryS3_S3_P19CGImageSourceStatus + 84
__ZN14I110ImageSourcel3getPropertiesEP13II0Dictionary + 408

entCreateWithProvider + 280
sionPDFRefP18II0ScannerPb + 112

Ox181¢13%a4 __ZN14I10ImageSourcelécopyPropertiesEP13II0Dictionary + 16
Ax181:17f00 _CGImageSourceCopyProperties + 244

Ox18f17b974 readFileProperties:fromImageSource:error: + 48

Ax18f77c7408 readFilePropertie romImageSource:withUpndatedloopCount:error: + 84
Ax18f77cd34 copyGifFromPath:toDestinationPath:error: + 264
Bxecc258c8

ImageIO
IMSharedUtiliti
IMSharedUtilit
IMSharedUtilities
IMTranscoderAgent

https://www.trendmicro.com/en_us/research/21/i/analyzing-pegasus-spywares-zero-click-iphone-exploit-
forcedentry.html

Methodology #3: Python baby!

*pip3 install frida #python bindings P pgthOn

* You can use python to run your javascript files
* |[terate faster

e Useful because you can pass data back to python and continue to
operate on it

e Special Thanks = Ryan Grandgenett

Hot Tool Tips Y

* Case Insensitive Searching
 Added by @Hexploitable

e frida-trace —U Messages —i “*test*/i"” Regular function
* frida-trace —U Messages —m “*[* *test*]/i” Objective-C function
* Live editing Javascript (Thanks Dr. Jiska Classen!)@naehrdine

* frida —U Messages —no-pause —I| Script.js

* Ephemeral process (Thanks Ole Andre!) @oleavr
* frida-trace -U —W com.apple.imcore.imtransferagent -i open
* (This is experimental/ WIP)

Conclusion

 Frida is FREE

* Frida is OPEN SOURCE (so if
something is broken, make
a ticket, or make a
contribution via Github ©)

e Frida is EASY TO USE! (I
hope you think so now too)

tht, like it's hard?

Questions?

@xine in the Discord

christine@herhaxpodcast.com
@x71n3 on Twitter

Like and Subscribe to OBTS!

mailto:christine@herhaxpodcast.com

