
FIDO on macOS

Joel Rennich

Identity Things

Jamf

@mactroll

How it works, attack vectors, and other learnings

FIDO is more secure in every
way than using a password

Focus on macOS, but almost
all of this carries over to iOS

FIDO in 30 secs…

As seen in…

As seen in…

PlatformRelying Party Authenticator

https://youridp.com Mac FIDO Key

FIDO Flow

PlatformRelying Party Authenticator

https://youridp.com Mac

FIDO Flow
FIDO Key

WebAuthn

JSON

PlatformRelying Party Authenticator

https://youridp.com Mac

WebAuthn

JSON

CTAP

CBOR

FIDO Flow
FIDO Key

Leaks and Curiosities

Type Casting

• FIDO has a strong focus on anonymity

• Each key is unique

• Attestations and AAGUIDs are done by batches of devices

• However… vendors do unique things

• KeyID length

• Sign Count

• Adherence to standards

Demo

Key Characteristics
Attestation ID Length Sign Count AAGUID w/out Attestation

Yubico Direct 64 bytes Device based 0000000000000000

Yubico Resident Key Direct 16 bytes Device based 0000000000000000

Thetis Direct 96/129 bytes Device based 0000000000000000

Thetis RK Direct 16 Key based 0000000000000000

Feitian Direct 96 Device based 0000000000000000

Feitian RK Direct 32 Device based 0000000000000000

Apple Platform It’s complicated 20 bytes Always 0 0000000000000000

Chrome Platform Self 80 bytes Unix time stamp adce0235bcc6a648bb25f1f0553

Non-scientific, subject to change, not for use with nuclear reactors, medical devices or anything you care about.

Author is not responsible for anything, including himself.

Syncing Platform Authenticator

Syncing Platform Authenticator

• “FIDO” keys kept in iCloud Keychain

• iOS 15 macOS Monterey

• Have to be turned on, and require an iCloud account

• Currently identify as a “platform” authenticator

• 🤔

• Will sync between devices

Better Understanding the
Communication

Let’s get wedged!

Interrupting the Flow

• Override navigator.credentials.create() and
navigator.credentials.get()

• Browser Extension

• Custom WKWebView or other web window

• Once you have control

• Change Attestation requirements

• Change platform vs. cross-platform authenticator

• Add attestation

https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API

https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API

1 PublicKeyCredential.isUserVerifyingPlatformAuthenticatorAvailable()

Lets the relaying party know that FIDO is available.

1 PublicKeyCredential.isUserVerifyingPlatformAuthenticatorAvailable()

Lets the relaying party know that FIDO is available.

2 navigator.credentials.create()

Takes a challenge and some other information and creates a new FIDO key.

1 PublicKeyCredential.isUserVerifyingPlatformAuthenticatorAvailable()

Lets the relaying party know that FIDO is available.

2 navigator.credentials.create()

Takes a challenge and some other information and creates a new FIDO key.

3 navigator.credentials.get()

Proves you have access to the private key associated with the account.

var real_create = navigator.credentials.create.bind(navigator.credentials);

navigator.credentials.create = function(options) {

 console.log("Credentials Create Logging Wrapper Engaged");

 var cleanedArgs = JSON.stringify(options, stringifyArrayCleaner);

 console.log(cleanedArgs);

 return new Promise(

 function (resolve, reject) {

 real_create(newOptions).then(value => {

 console.log(“Credentials Create Response");

 console.log(value);

 resolve(value);

 }, reason => {

 console.log(reason);

 reject(reason);

 });

 });

}

var real_create = navigator.credentials.create.bind(navigator.credentials);

navigator.credentials.create = function(options) {

 console.log("Credentials Create Logging Wrapper Engaged");

 var cleanedArgs = JSON.stringify(options, stringifyArrayCleaner);

 console.log(cleanedArgs);

 return new Promise(

 function (resolve, reject) {

 real_create(newOptions).then(value => {

 console.log(“Credentials Create Response");

 console.log(value);

 resolve(value);

 }, reason => {

 console.log(reason);

 reject(reason);

 });

 });

}

var real_create = navigator.credentials.create.bind(navigator.credentials);

navigator.credentials.create = function(options) {

 console.log("Credentials Create Logging Wrapper Engaged");

 var cleanedArgs = JSON.stringify(options, stringifyArrayCleaner);

 console.log(cleanedArgs);

 return new Promise(

 function (resolve, reject) {

 real_create(newOptions).then(value => {

 console.log(“Credentials Create Response");

 console.log(value);

 resolve(value);

 }, reason => {

 console.log(reason);

 reject(reason);

 });

 });

}

Demo

FIDO is more secure in every
way than using a password

Keys can lie

Your Lying Keys

User Presence, User Verification and other aspects of assertions
require trusting the key

Demo

Your Lying Keys

User Presence, User Verification and other aspects of assertions
require trusting the key

Only trust keys with attestation

Your Lying Keys

User Presence, User Verification and other aspects of assertions
require trusting the key

Only trust keys with attestation

Chrome and Safari Platform Authenticators don’t do direct
attestations*

Speaking of Attestation…

attestationObject: {

 "fmt": "packed",

 "attStmt": {

 "alg": -7,

 "sig": <<array buffer>>,

 "x5c": [<<array buffer>>]

 },

 "authData": {

 "rpIdHash": "f95bc73828ee21f9fd3bbe72d97908013b0a3759e9aea3dae318766cd2e1ad",

 "flags": {

 "userPresent": true,

 "reserved1": false,

 "userVerified": true,

 "reserved2": "0",

 "attestedCredentialData": true,

 "extensionDataIncluded": false

 },

 "signCount": 0,

 "attestedCredentialData": {

 "aaguid": "0000000000000000",

 "credentialIdLength": 20,

 "credentialId": "586dcf643e8d88fa8d33f77383b29885d88c0fa",

 "credentialPublicKey": {

 "kty": "EC",

 "alg": "ECDSA_w_SHA256",

 "crv": "P-256",

 "x": "Ec5m1WYnzTUGx7K8d03jYzpfXQJzA6EpqcYvxrmoQLg=",

 "y": "qxK7/ZErvjQ/gadyPGRHZlJx32Svaz60baxpFiGQ8B4="

 }

 }

 }

 }

attestationObject: {

 "fmt": "packed",

 "attStmt": {

 "alg": -7,

 "sig": <<array buffer>>,

 "x5c": [<<array buffer>>]

 },

 "authData": {

 "rpIdHash": "f95bc73828ee21f9fd3bbe72d97908013b0a3759e9aea3dae318766cd2e1ad",

 "flags": {

 "userPresent": true,

 "reserved1": false,

 "userVerified": true,

 "reserved2": "0",

 "attestedCredentialData": true,

 "extensionDataIncluded": false

 },

 "signCount": 0,

 "attestedCredentialData": {

 "aaguid": "0000000000000000",

 "credentialIdLength": 20,

 "credentialId": "586dcf643e8d88fa8d33f77383b29885d88c0fa",

 "credentialPublicKey": {

 "kty": "EC",

 "alg": "ECDSA_w_SHA256",

 "crv": "P-256",

 "x": "Ec5m1WYnzTUGx7K8d03jYzpfXQJzA6EpqcYvxrmoQLg=",

 "y": "qxK7/ZErvjQ/gadyPGRHZlJx32Svaz60baxpFiGQ8B4="

 }

 }

 }

 }

<- Flags

<- P256 key

<- Key ID

attestationObject: {

 "fmt": "packed",

 "attStmt": {

 "alg": -7,

 "sig": <<array buffer>>,

 "x5c": [<<array buffer>>]

 },

 "authData": {

 "rpIdHash": "f95bc73828ee21f9fd3bbe72d97908013b0a3759e9aea3dae318766cd2e1ad",

 "flags": {

 "userPresent": true,

 "reserved1": false,

 "userVerified": true,

 "reserved2": "0",

 "attestedCredentialData": true,

 "extensionDataIncluded": false

 },

 "signCount": 0,

 "attestedCredentialData": {

 "aaguid": "0000000000000000",

 "credentialIdLength": 20,

 "credentialId": "586dcf643e8d88fa8d33f77383b29885d88c0fa",

 "credentialPublicKey": {

 "kty": "EC",

 "alg": "ECDSA_w_SHA256",

 "crv": "P-256",

 "x": "Ec5m1WYnzTUGx7K8d03jYzpfXQJzA6EpqcYvxrmoQLg=",

 "y": "qxK7/ZErvjQ/gadyPGRHZlJx32Svaz60baxpFiGQ8B4="

 }

 }

 }

 }

<- Attestation

Demo

Enterprise Attestation - Okta

Enterprise Attestation - OneLogin

Enterprise Attestation - Azure

Enterprise Attestation - Azure

Always require attestation…?

🤔

If you’re not so nice…

1 Block existing keys from working

Confuse user into thinking it’s their fault. Can apply to platform and cross-platform.

1 Block existing keys from working

Confuse user into thinking it’s their fault. Can apply to platform and cross-platform.

2 Have user register new key

Allow the key the user thinks they are using to go through the ceremony.

1 Block existing keys from working

Confuse user into thinking it’s their fault. Can apply to platform and cross-platform.

2 Have user register new key

Allow the key the user thinks they are using to go through the ceremony.

3 Profit!

Exfiltrate key

The moral of the story…

1. Don’t blindly trust the
browser.

2. Attestation can keep some of the
riffraff out, but it will increase

complexity.

And…

FIDO is more secure in every
way than using a password

Intrigued?

Thanks!

👋

