Lock Picking the
macOS
keychain

OBTS v5 Oct 2022

Whoami?

Cody Thomas @its_a_feature_gC}
-» Sr. Software Dev. at SpecterOps 7z'3
-» Created Mythic C2 Framework -
=» macOS Red Teamer A
= Instructor for Mac Tradecraft
=* Love-hate relationship with JXA

{

N

Overview

=» What is the macOS Keychain
=» Why go after the macOS Keychain
=» What are Keychain ltems

=?» Accessing the Keychain

=?» 3 Keychain Goodies

1
What is the macOS Keychain?

Keychain Services

Securely store small chunks of data on behalf of the user.

Overview

Computer users often have small secrets that they need to store securely. For example, most people manage numerous
online accounts. Remembering a complex, unique password for each is impossible, but writing them down is both
insecure and tedious. Users typically respond to this situation by recycling simple passwords across many accounts,
which is also insecure.

The keychain services API helps you solve this problem by giving your app a mechanism to store small bits of user data
in an encrypted database called a keychain. When you securely remember the password for them, you free the user to

choose a complicated one.))
Keychain services API

. Keychain
|

Cryptographic
keys

Certs & identities

https://developer.apple.com/documentation/security/keychain_services

Keychain Types

=>Two different “kinds” of Keychains:

- File-based keychain (what we’re talking about here)

- macOS based
- Database "Data Protection” keych‘ain

- iOS and iCloud based

Two Keychains by Default

 System Keychain

User Keychain
=» ~/Library/Keychains/login.keychain-db |

=» /Library/Keychains/System.keychain

| =» WiFi Passwords

=* Application Passwords =» System Root Certificates

. =» Internet Passwords =» System Private Keys

=» Network Passwords

=» User-generated Public/Private Keys

Keychain Access.app

Keychain Access g ® Q

All ltems | Passwords Secure Notes My Certificates Keys Certificates

o login

A Chrome Safe Storage
of* Local Items

Kind: application password
Account: Chrome

Where: Chrome Safe Storage
Modified: Mar 3, 2022 at 5:41:02 PM

o System

(@ System Roots

AirPlay Server Identity: e72fdcb4
Apple Persistent State Encryption

bigsur1
Box

Chrol afe Storage
com.apple.assistant

com.apple.assistant
com.apple.assistant
com.apple.assistant

com.apple.iAdIDRecords

com.apple.NetworkServiceProxy.ProxyToken

com.apple.NetworkServiceProxy.ProxyToken

com.apple.NetworkServiceProxy.ProxyToken

com.apple.NetworkServiceProxy.ProxyToken

com.apple.scopedbookmarksagent.xpc

com.microsoft.adalcache

com.microsoft.OneDriveStandaloneUpdater.HockeySDK

com.microsoft.OutlookCore.Secret

Kind

AirPlay Server Identi
application password
network password

application password
application password
application password
application password
application password
application password
application password
application password
application password
application password
application password
application password
application password
application password
application password

Date Modified

Feb 15, 2022 at 10:57:39...
Sep 19, 2022 at 3:30:41...
Jun 8, 2022 at 12:57:12 PM
Today, 12:37 PM

Mar 3, 2022 at 5:41:02 PM
Aug 31, 2022 at 9:44:

Aug 31, 2022 at 9:44:

Aug 31, 2022 at 9:44:31...
Sep 6, 2022 at 9:58:36 AM
Aug 26, 2021 at 8:43:29...
Yesterday, 1:53 PM

Sep 21, 2022 at 7:46:07...
Sep 19, 2022 at 12:37:14...
Sep 21, 2022 at 7:46:08...
Dec 2, 2020 at 7:27:18 PM
Today, 1:30 PM

Dec 2, 2020 at 8:07:44 PM
Dec 7, 2020 at 9:56:58 AM

Keychain

login
login
login
login
login
login
login
login
login
login
login
login
login
login
login
login
login
login

2.
Why the macOS Keychain?

Offensive Tradecraft - current

=*>No Apple protections around the keychain files

- Download for later analysis

- Metadata around entries is plaintext, but passwords are
encrypted
=>Need the user’s plaintext password to decrypt offline file

- Can be very tough to get user’s password

- Chainbreaker Python GitHub Project
=>Want keychain entries for additional techniques

- Chrome Safe Storage, Slack Safe Storage, Developer
signing certificates, etc

Offensive Tradecraft - desire

=>Retrieve decrypted secrets without prompting

- Even if we’re wrong about what we can get without
prompting, no prompting

- SecKeychainSetUserInteractionAllowed
=*Don’t have to know the user’s plaintext password

- If we had this, we’d just do it all offline
=>Find misconfigurations (and abuse them)
=>Avoid command-line based detections

- Avoid anomalous file opens on the keychain

Offensive Tradecraft - Tooling

=*>Created new Obijective C tool — LockSmith
- Open Source on GitHub:

- https://github.com/its-a-feature/LockSmith

- Generates Mach-O and Dylib

=>Complementary LockSmithLiteJXA

- Open Source on same GitHub

o
What are Keychain Items?

Keychain Items — 2 components

=?» Encrypted secret
=» Attributes about the secret (not encrypted)

Keychain sgrvices API

Keychain

Account:
Label: Slack Safe Storage
Service: Slack Safe Storage
Creation Date: 2021-11-12 22:27:45
Modify Date: 2021-11-12 22:27:45
Class: genp

https://developer.apple.com/documentation/security/keychain_servies eyc n_ltems. anguage=objc

Keychain ltems Access

=*» Access Control Lists (ACLS)

Authorizations (operations) and who can do them

Keychain item
(SecKeychainItem)

Encrypted private key

Attributes Access

(SecAccess)
Key Class Access control list entry

i (SecACL)
Key Size Access control list

Operations Trusted a
PSS Entry p PP
Entry Decrypt App
Sign App

Export

https://developer.apple.com/documentation/security/keychain_services/access_control_lis s anguage=oDbjC

Keychain ACL Entries

=» Offensively interesting authorizations

ACLAuthorizationExportClear
ACLAuthorizationExportWrapped
ACLAuthorizationAny

=?» Trusted Applications

List* of applications that can do the action without prompting
Can be Nil, empty list, or a list of applications

Keychain ACL Entries

=» ACLAuthorizationPartitionID

Super weird description

——— Entry 2
Description: 67622e03a@b87c¢7394d39ce76ae4c10d92f2bcechbad8038e51c37be@786d893f
All applications are trusted
Authorizations:
ACLAuthorizationIntegrity
——— Entry 3
Description: 3c3f786d6c2076657273696T6e3d22312e302220656e636T64696e673d225554462d38223F3e0a3c21444T43545950
4520706c697374205055424c494320222d2T2T4170706c652T2T44544420504c49535420312e302F2T454€222022687474703a2F2F7777772e6170706¢6
52e636T6d2T445444732F50726T70657274794c6973742d312e302e647464223e0a3¢c706c6973742076657273696T6e3d22312e30223e0a3c646963743e
0a093c6b65793e506172746974696T6e733¢c2T6b65793e0a093c61727261793e0a09093c737472696e673e6170706c653a3¢c21737472696€673€02093¢2

£61727261793e0a3c2f646963743e0a3c2f706c6973743e0a
All applications are trusted
Authorizations:
ACLAuthorizationPartitionID

Keychain ACL Entries

=» ACLAuthorizationPartitionID

kSecACLAuthorizationKeychainItemInsert

Insert an item into a keychain.

kSecACLAuthorizationKeychainItemModify

Modify an item in a keychain.

kSecACLAuthorizationKeychainItemDelete

Delete an item from a keychain.

kSecACLAuthorizationChangeACL

Change an access control list entry.

kSecACLAuthorizationChangeOwner

For internal system use only. Use the CSSM_ACL_AUTHORIZATION_CHANGE_ACL tag for changes to owner ACL
entries.

kSecACLAuthorizationIntegrity

kSecAC thorizationPartitio

Keychain ACL Entries

=» ACLAuthorizationPartitionID

Global Variable

kSecACLAuthorizationPartitionlD

(' mac0S 10.11+)
~——

Declaration

const CFStringRef kSecACLAuthorizationPartitionID;

ACLAuthorizationPartitionID

=*>Not always present (ex: not on System keychain entries)
=»Description is hex encoded plist with one key — Partitions

- teamid: - must be signed by a certain teamid

- apple: - must be signed by apple

- cdhash: - must have a specific CDHash

-—— Entry 3
Allowed Code Signatures: teamid:BQR82RBBHL
TeamID doesn't match current application: nil
Description: 3c3f786d6c2076657273696T6e3d22312e302220656e636T64696e673d225554462d38223F3e0a3c21444T435459
504520706c697374205055424c494320222d2F2F4170706c652F2F44544420504c49535420312e302F21F454e222022687474703a2F2F7777772e61707
06c652e636T6d2f445444732F50726T70657274794c6973742d312e302e647464223e0a3¢c706c6973742076657273696T6e3d22312e30223e0a3¢cb469
63743e0a093c6b65793e506172746974696T6e733c2Tf6b65793e0a093c61727261793e0a09093c737472696e673e7465616d69643a425152383252424

2484c3c2f737472696e673e0a093c2161727261793e0a3¢c2f646963743e0a3c2f706c6973743e0a
All applications are trusted
Authorizations:
ACLAuthorizationPartitionID

Keychain Basic ACLs

=»> New Keychain items via Keychain Access get 5 ACLs:

All applications can Encrypt

- No applications can Export/Decrypt

- All applications can see the Integrity Check
- No applications can change ACLs

- PartitionID set to apple:

=» Set this way to all applications can do “non dangerous” things
and no applications can do “dangerous” things

=> “No application” means “without prompting for user consent”

Keychain Standard ACLs

=» New Keychain items

get 5 ACLs:

All applications can Encrypt

applications can Export/Decrypt

All applications can see the Integrity Check

No applications can change ACLs

PartitionID set to

=» Set this way to all applications can do “non dangerous” things
and few applications can do “dangerous” things

=> “No application” means “without prompting for user consent”

GUI Access Control Perspective

Application
Keychain Access oo

Attributes Access Control

test

N Allow all applications to access this item
Attributes Access Control © Confirm before allowing access
Ask for Keychain password
Allow all applications to access this item
© Confirm before allowing access Always allow access by these applications:

Ask for Keychain password Name
Always allow access by these applications: 4 Slack.app

Name

4,
Accessing the Keychain

Security built-in tool

=* security dump-keychain -a —d

- Dump all metadata and decrypted secrets from the
keychain
=» security find-generic-password -a “Slack” —g

- Find generic passwords for the “Slack” account and print
the secrets
=» security set-generic-password-partition-list —s “test
service” —a “test account” -S
“cdhash:ac48c1600ffe453258c156478a9b31af922¢c53a5”

- Change the specified entry’s PartitionID entry

API - SecltemCopyMatching

=>Gives the generic attributes about entries
=>CFDictionary of search parameters

- kSecReturnData — try to decrypt automatically or not
- Set to False

- kSecReturnRef — get reference to keychain item

- Set to True

- kSecReturnAttributes — get metadata about entries

- kSecMatchLimit — how many results to return

- kSecClass — what kind of keychain entry

"Account:
Label:
'Service:

‘Creation Date:
'Modify Date:

Class:

-

Keys

Keychain Entry

(null)

com.

apple.kerberos.kdc

(null)

Key details:

Signable:
kcls:

Encrypt:
Decrypt:
Wrap Key:

Unwrap Key:
Verify Key:

Key Type:
Permanent:

Derive Key:

klbl:
esiz:
bsiz:

(null)
(null)
keys

YES
1

NO
YES
NO
YES
NO
42
YES
NO
uxG3rmNFP14g101cs1ZdQ7BxYxs=
2048
2048

Keychain Item Attributes

Certs

Account:
Label:
Service:
Creation Date:
Modify Date:
Class: cert
Certificate details:
Cert Type:
Cert Subj:
Cert pkhh:
Cert issr:
Cert slnr:
Cert cenc:

com.apple.kerberos.kdc
(null)
(null)
(null)

0
MDsxHzAdBgNVBAMMFm]
uxG3rmNFP14gl0lcsl
MDsxHzAdBgNVBAMMFm
cncbhWw==

3

API - SecAccessCopyACLList

=>Get access control lists for keychain item reference
=*>Returns list of ACLs where each has:

- Description

- Trusted Application List

- /Applications/Slack.app
- /usr/libexec/airportd
- group://AirPort
- Application Group
- Prompt Selector
- Largely ignored

API - Exporting Passwords

=»SecKeychainltemCopyContent

- Gets the plaintext secret data
=»SecltemExport

- Exports Keys and Certificates

- Might have to set passwords and export encrypted

Operationally though...

\ But... so what?

That’s cool

Exporting Without Prompts

=>If 1+ trusted applications listed:
- Need appropriate Authorizations
- Need code signature to match PartitionID
- Need code signature to match that of one trusted App

- Or be a member of the right KeychainAccessGroup
=>If all applications trusted:

- Need appropriate Authorizations
- Need code signature to match PartitionIDs

- If no PartitionlID then truly is ALL aplications

Matching Apps and PartitionIDs

=>If 1+ trusted applications are listed:

- Need to get app to load up our code somehow
- DYLD_INSERT_LIBRARIES, Dylib Hijacking, etc.

=>\What about apple: partition ID?

- osascript is an apple platform binary that loads up our
arbitrary code

- JXA for the win!
- python also works, but isn’t included by default ®

5%
Keychain Goodies

- Microsoft

Two Additional Attributes

=>*|nvisible

- Boolean flag to hide Keychain entry from Keychain
Access application

- Only affects users trying to browse through the Ul
=>General

- Free-form string of additional metadata

- Because it’s metadata, it’s not encrypted

Microsoft Office Ticket Cache

=>Programmatically we can fetch all entries and all their
metadata properties

- MASSIVE General Attribute blob

Account: Microsoft Office Ticket Cache
Label: Microsoft Office Ticket Cache
Service: (null)

Creation Date: 2020-12-03 ©02:11:43

Modify Date: 2022-09-23 19:18:21

Class: genp
Invisible: YES

General: YnBsaXNOMDDRAQJfECkOYmZjMzM3MS0O
5ZWZFLTIhNWYWNJjYQYFEzZNNEFB1tUaWNrZXRDYWNoZd8Q
ZW50Lm9zaS5vZmZpY2UubmVOL3xfEGBodHRwczovL291d
HJ1ZSwgInZhbHV1IjoiMTY2MjIyNjQ3NCJI9fX1fEClodH
ZpY2UubzM2NWZpbHR1cmluZy5jb218XxAfaHROCHM6LY9

Microsoft Office Ticket Cache

=»Turns out to be a large binary plist

- plutil —convert xml1

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>4bf...4b134_ADAL</key>
<dict>
<key>4bf...4b134</key>
<dict>
<key>TicketCache</key>
<dict>
<key>394...be2a|</key>
<dict>
<key>Expires</key>
<string>2022-09-23T720:48:227</string>
<key>Ticket</key>
<string>eyJhbGci...</string>
</dict>
<key>https://api.office.net|</key>
<dict>
<key>Expires</key>
<string>2022-09-24T13:50:04Z</string>
<key>Ticket</key>

Microsoft Office Ticket Cache

=>JWT “tickets” for:

https://api.office.net

https://augloop.office.com/v2

https://clients.config.office.net/

https://dataservice.0365filtering.com/

https://fenrichment.osi.office.net/

https://graph.microsoft.com/

https://messaging.engagement.office.com/*

https://outlook.office.com

https://outlook.office365.com/

https://pptsgs.officeapps.live.com

https://presence.teams.microsoft.com/

Office365.com JWT Scope

=» MapiHttp.AccessAsUser.All

=» Calendars.ReadWrite =» Tags.ReadWrite

| =» Calendars.ReadWrite.Shared =» MessageReaction- =» Tasks.ReadWrite
| -» Contacts.ReadWrite Internal.Update =» Tasks.ReadWrite.Shared
 =» Contacts.ReadWrite.Shared =» Notes.Read =» Todo-Internal.ReadWrite
| =» EAS.AccessAsUser.All =>» Notes.ReadWrite =» User.ReadBasic

=» EopPolicySync.AccessAsUser. =» Oab.AccessAsUser.All =» User.ReadBasic.All
Al =» OutlookService.AccessAsUser. =» user_impersonation

| =» EopPsorWs.AccessAsUser.All All ‘ =» User-Internal.ReadWrite
L =» EWS.AccessAsUser.All -

-> = People.Read

=» Files.ReadWrite.Shared =» People.ReadWrite

=» Group.ReadWrite.All =» Place.Read.All

- =» Privilege.ELT

| =» Mail.ReadWrite.Shared =» Signals.Read

=» Mail.Send =» Signals.ReadWrite
=>» Mail.Send.Shared =» SubstrateSearch-
=*» MailboxSettings.ReadWrite Internal.ReadWrite

Microsoft Office Ticket Cache

=>ACLs — Locked down to Microsoft Outlook

- What’s stored in the keychain entry then?

—-—— Entry ©
Description: Microsoft Office Ticket Cache
Trusted App: /Applications/Microsoft Outlook.app
Requirement String: identifier "com.microsoft.Outlook" and anchor apple generic and certificate 1
[field.1.2.840.113635.100.6.2.6] /* exists */ and certificate leaf[field.1.2.840.113635.100.6.1.13] /% exists %/ and cert
ificate leaf[subject.OU] = UBF8T346G9
Application is valid
Authorizations:
ACLAuthorizationDecrypt
ACLAuthorizationDerive
ACLAuthorizationExportClear
ACLAuthorizationExportWrapped
ACLAuthorizationMAC
ACLAuthorizationSign
-—— Entry 1
Description: Microsoft Office Ticket Cache
All applications are trusted
Authorizations:
ACLAuthorizationEncrypt
—-—— Entry 2
Description: 5360d82434bf62a5a90b59e7f62723992cba2f2fb692bce@80ab613a313d46983
All applications are trusted
Authorizations:
ACLAuthorizationIntegrity

-—- Entry 3
Allowed Code Signatures: teamid:UBF8T346G9

Microsoft Office Ticket Cache

=>Dump the entry with security tooling

itsafeature@spooky Debug % security find-generic-password -1 "Microsoft Office Ticket Cache" -g
keychain: "/Users/itsafeature/Library/Keychains/login.keychain-db"
version: 512
class: "genp"
attributes:
0x00000007 <blob>="Microsoft Office Ticket Cache"
0x00000008 <blob>=<NULL>
"acct"<blob>="Microsoft 0ffice Ticket Cache"
"cdat"<timedate>=0x32303230313230333032313134335A00 '"20201203021143Z\000"
"crtr'<uint32>=<NULL>
"cusi"<sint32>=<NULL>
"desc"<blob>=<NULL>
"gena'"<blob>=0x62706C. . .<snip>
bplist@0\321\001\002_\020)4bfc...<snip>
"icmt"<blob>=<NULL>
"invi'<sint32>=0x00000001
"mdat"<timedate>=0x32303232303932333139313832315A00 '202209231918217\000"
"nega"<sint32>=<NULL>
"prot"<blob>=<NULL>
"scrp"<sint32>=<NULL>
"svce"<blob>=<NULL>

Hdumnall i nd 20— AT <

password:

IT'S EMPTY!!

5%
Keychain Goodies

Slack

Slack App Keychain Entries

—Keychain Entry

Slack

Slack Safe Storage

Slack Safe Storage

¢ 2021-11-12 22:27:45
2021-11-12 22:27:45
genp
Owner Authorizations based on ACLAuthorizationPartitionID
Owner Authorizations:
ACLAuthorizationEncrypt
ACLAuthorizationDecrypt
ACLAuthorizationDerive
ACLAuthorizationExportClear
ACLAuthorizationExportWrapped
ACLAuthorizationMAC
ACLAuthorizationSign
ACLAuthorizationIntegrity
ACLAuthorizationPartitionID
ACLS:

-—— Entry 0

Description: Slack Safe Storage

All applications are trusted

Authorizations:

AL A+ boriootdonlnory s

——— Entry 1
Description: Slack Safe Storage
Trusted App: /Applications/Slack.app
Requirement String: identifier "com.tinyspeck.slackmacgap" and anchor a
pple generic and certificate 1[field.1.2.840.113635.100.6.2.6] /* exists */ and certificate lea
flfield.1.2.840.113635.100.6.1.13] /* exists */ and certificate leaf[subject.OU] = BQR82RBBHL
Application is valid
Authorizations:
ACLAuthorizationDecrypt
ACL Ad+booss oot d onDaad o
ACLAuthorizationExportClear
ACLAuthorizationExportWrapped
ACLAuthorizationSign
-—— Entry 2
Description: 9c7d3204702cae4e374379f65059d1d695adabé67bblefd6f69ch34bdbé127ab29
All applications are trusted
Authorizations:
—-—— Entry 3
Allowed Code Signatures: teamid:BQR82RBBHL

Trusted Application with
requirement string

Authorizations we want e

PartitionID with teamID
requirements

Slack App Hijacks

=?» Current application is hardened

itsafeature@spooky Debug % codesign -d -vvv /Applications/Slack.app

Executable=/Applications/Slack.app/Contents/Mac0S/Slack

Identifier=com.tinyspeck.slackmacgap

Format=app bundle with Mach-0 thin_ (x84 A4)

CodeDirectory v=20500 size=485 flags=0x12000(library-validation, runtime) lhashes=4+7 location=em
bedded

itsafeature@spooky Debug % codesign -d ——entitlements — /Applications/Slack.app
Executable=/Applications/Slack.app/Contents/Mac0S/Slack

[Dict]

[Key] com.apple.security.

[Valuel
[Bool] true

[Key]l com.apple.security.

[Valuel

[Bool] true
[Key]l com.apple.security
[Valuel

[Bool] true

[Key] com.apple.security.

[Valuel
[Bool] true

[Key]l com.apple.security.

[Valuel
[Bool] true

[Key]l com.apple.security.

[Valuel
[Bool] true

[Key]l com.apple.security.

[Valuel
[Bool] true

device.usb

cs.allow-jit

.device.print NO VL"nerabIe
entitliements for
malicious dylibs

device.camera

device.bluetooth

device.audio-input

personal-information.location

Slack App Hijacks

=?» Hijack execution of existing app

- Not easy ®
=» Download older version of app

https://www.macupdate.com/app/mac/50617/slack/old-versions

, Download Old Versions of Slack: 3.1.1 - 2.3.0

If you experience any compatibility issues with Slack for Mac, consider downloading one of
the older versions of Slack. MacUpdate stores previous versions of Slack for you since v.
2.30.

05 Apr 2018 74.7 MB 0S X10.9.0 Download

25 Oct 2016 67.3 MB 0OS X10.8.0 Download

Slack App Hijacks

=» Bad signing / entitlements - abusable

- DYLD_INSERT_LIBRARIES FTW

itsafeature@spooky Debug %|codesign -d -vvv /Volumes/Slack.app/Slack.app
Executable=/Volumes/Slack.app/Slack.app/Contents/MacUS/Slack
Identifier=com.tinyspeck.slackmacgap

Format=app bundle with Mach-0 thin.lvl4 AL)

CodeDirectory v=20200 size=281 flags= 0x0(none) hashes=3+3 location=embedded
Hash type=sha256 size=32

CandidateCDHash shal=d5fbdfcff3d5f68207f7ab33cfea873fc7393d56
CandidateCDHashFull shal=d5fbdfcff3d5f68207f7ab33cfea873fc7393d56
CandidateCDHash sha256=b6fd4445e810dd2ef4d1b1809831f03b5fb035a0
CandidateCDHashFull sha256=b6fd4445e810dd2ef4d1b1809831f03b5fb035a02e1405¢c230a344026998F69e
Hash choices=shal, sha256
CMSDigest=2167f33311be94371a0715e544ed12fclec2408d933df373e12c5d66d56536af
CMSDigestType=2

CDHash=b6fd4445e810dd2ef4d1b1809831f03b5fb035a0

31' Anatiire c170—R02A

Authority=Developer ID Application: Slack Technologies, Inc. (BQR82RBBHL)
Authority=Developer ID Certification Authority

Authority=Apple Root CA

Timestamp=Mar 30, 2018 at 5:04:18 PM

Info.plist entries=19

TeamIdent1f1er-BQR82RBBHL

SCGJ.CU F\CDUULMCO VULDJ.UII L LULCTO— J.\) IJ.J.CD—OU

Internal requirements count=1 size=188

Slack App Hijacks

=» Code Requirements from new and old applications match

Current Slack

Trusted App: /Applications/Slack.app
Requirement String: identifier "com.tinyspeck.slackmacgap" and anchor a
pple generic and certificate 1[field.1.2.840.113635.100.6.2.6] /* exists */ and certificate lea
f[field.1.2.840.113635.100.6.1.13] /* exists */ and certificate leaf[subject.0OU] = BQR82RBBHL

- 0Old Slack

Current Process: /Volumes/Slack.app/Slack.app/Contents/Mac0S/Slack

Requirement String: identifier "com.tinyspeck.slackmacgap" and anchor apple generic and
certificate 1[field.1.2.840.113635.100.6.2.6] /* exists */ and certificate leaf[field.1.2.840.
113635.100.6.1.13] /* exists */ and certificate leaf[subject.OU] = BQR82RBBHL

Slack App Hijacks

=» Don’t need to run from /Applications/Slack.app

- Just need to match requirements string and
PartitionlD
=*» Mount old Slack in /Volumes/Slack
=» Use DYLD_INSERT_LIBRARIES to load our Dylib
=» Execute our LockSmith code in the constructor

5%
Keychain Goodies

- computer$ & com.apple.kerberos.kdc

Computer$ when AD joined

=» Can’t always get contents of ACL entries

fActive Directory/ORCHARD
Service: fActive Directory/ORCHARD
Creation Date: 2022-88-82 18:37:17
Modify Date: 2822-89-13 18:39:16
Class: genp
OwnerID: @
GroupID: @
OwnerType: Bx181

Owner Authorizations don't match our user context
Owner Authorizations:
l ACLAuthorizationAny

—— Entry @
Failed to copy contents with errrm~: —25248
Failed to copy simple cop’c..s with error: -25248
Authorizations:
ACLAuthorizationAny
—— Entry L
Failed to copy contents with error: —-25248
Failed to copy simple contents with error: -25248
Authorizations:
ACLAuthorizationChangeACL

Suspiciously broad

Computer$ when AD joined

=» As a standard user, can’t get the plaintext password without prompting

=» As root, can get the plaintext password without prompting

OwnerID: @

GroupID: @8

OwnerType: Bx181
Owner Authorizations don't match our user context

=» Owner type 0x101 means the userlD must match (0 in this case) and
that root should be treated as a normal user account

=» This is expected* — normal users shouldn’t get computer$

Computer$ when AD joined

=» Looking at the same data in the Keychain Access application shows a
different story

[Active Directory/ORCHARD

Attributes Access Control

O Allow all applications to access this item Access to this ltem |s not restricted.
Confirm before allowing access

Always allow access by these applications:

Computer$ when AD joined

=» If we toggle the “All applications” default access to “no applications” and
back again, then save the entry, the ACLs change

Label: fActive Directory/ORCHARD
Service: fActive Directory/ORCHARD
Creation Date: 2022-88-82 18:37:17
Modify Date: 2022-89-24 B2:41:13
Class: genp

OwnerID: @

GroupID: 8 Also, now standard
OwnerType: Bx1@81

Owner Authorizations don't match our user context users can eXpOI‘t

Owner Authorizations: .
ACLAuthorizationAny SeCI’et W|th0ut

———————————————————————— prompting!

—-—— Entry 8
Description: fActive Directory/ORCHARD
All applications are trusted
Authorizations:
ACLAuthorizationAny

ENtry
Failed to copy contents with error: -25248
Failed to copy simple contents with error: -25248
Authorizations:
ACLAuthorizationChangeACL

com.apple.kerberos.kdc

=» com.apple.kerberos.kdc PrivateKey has the same issue as computer$

OwnerID: ©

GroupID: ©

OwnerType: Ox1
Owner Authorizations don't match our user context

Owner Authorizations:
ACLAuthorizationDecrypt
ACLAuthorizationDerive
ACLAuthorizationExportClear
ACLAuthorizationExportWrapped
ACLAuthorizationMAC
ACLAuthorizationSign
ACLAuthorizationAny

—-—— Entry 0
Description: lkdc-acl
Trusted App: /System/Library/PrivateFrameworks/Heimdal.framework/Helpers/kdc
Requirement String: identifier "com.apple.kdc" and anchor apple
Authorizations:
ACLAuthorizationDecrypt
ACLAuthorizationDerive
ACLAuthorizationExportClear
ACLAuthorizationExportWrapped
ACLAuthorizationMAC
ACLAuthorizationSign
ntry
Description: com.apple.kerberos.kdc
All applications are trusted
Authorizations:
ACLAuthorizationAny

com.apple.kerberos.kdc

=» com.apple.kerberos.kdc PrivateKey has the same issue as computer$
=» Root can export com.apple.kerberos.kdc private key, public key, and
certificate without prompting

=» These together allow you to be any user to LKDC

=» LKDC handles authentication for:
=» Screen Sharing (VNC)
=» File Sharing (SMB / APFS)

- Remote Management

=» Who resets LKDC on each mac after compromise?

Questions?

55

