
Dissecting the Encryption

Protocols Inside Apple AirTags

By Christine Fossaceca

$whoami

@x71n3 my dog Honey(pot)

🎙️@herhaxpodcast

STREAM SEASON 2 NOW!

Watch the live podcast replay

YouTube.com/@herhaxpodcast

Agenda

•Last year: (lightning review)
• What is the Continuity Protocol?

• How to Capture Continuity Data

• Packet Breakdown

•This year:
• FindMy Protocol

• AirTag Packet Breakdown

• AirTag Encryption

Continuity Protocol RECAP

● ”Continuity” allows for information sharing and “seamless” experience” across Apple
products and peripherals

○ Examples: Resume browsing from iPhone to MacBook, Universal Clipboard, Instant Hotspot, WiFi Password

● Powered via a combination of Wi-Fi and Bluetooth LE

● Proprietary! But we have reverse engineered this protocol and disclosed to Apple where
Continuity exposes sensitive information or is poorly implemented. Shmoocon 2020.
Objective By the Sea 2022. Jailbreak Security Summit 2022.

● Past @furiousmac Papers: Handoff All Your Privacy – A Review of Apple’s Bluetooth
Low Energy Continuity Protocol; Who Tracks the Trackers? Circumventing Apple’s
Anti-Tracking Alerts in the Find My Network;

● Other research: Discontinued Privacy: Personal Data Leaks in Apple Bluetooth-Low-Energy
Continuity Protocols; TU Darmstadt (multiple works) such as Open Haystack and AirGuard

It’s not a bug, it’s a feature!

https://samteplov.com/publications/handoff-all-your-privacy/
https://samteplov.com/publications/handoff-all-your-privacy/
https://samteplov.com/publications/who-tracks-the-trackers/
https://samteplov.com/publications/who-tracks-the-trackers/
https://petsymposium.org/popets/2020/popets-2020-0003.pdf
https://petsymposium.org/popets/2020/popets-2020-0003.pdf
https://www.seemoo.tu-darmstadt.de/team/jclassen/
https://www.seemoo.tu-darmstadt.de/team/aheinrich/
https://github.com/seemoo-lab/openhaystack
https://github.com/seemoo-lab/AirGuard

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

The access address is at a 24
byte offset

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

c2:b6:98:c8:df:17

14:7d:da:75:7b:bc

60:7e:9d:e4:6f:8b

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

BLE flags related
to discoverability
and transmission
power (not Apple
Specific)

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Length 0x2, 2 bytes of flag info

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Length 0x2, 2 bytes of flag info

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Length 0x2, 2 bytes of flag info Length 0x13, 19 bytes succeeding

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Length 0x2, 2 bytes of flag info Length 0x13, 19 bytes succeeding

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

0xb

Continuity Protocol Explained It’s not a bug, it’s a feature!

0xb

Continuity Protocol Explained It’s not a bug, it’s a feature!

Type 18: Find My

0xb

Continuity Protocol Explained It’s not a bug, it’s a feature!

Type 18: Find My

Type 16: Nearby

0xb

Continuity Protocol Explained It’s not a bug, it’s a feature!

Type 18: Find My

Type 16: Nearby

Type 12: Handoff

0xb

Continuity Protocol Explained It’s not a bug, it’s a feature!

Type 18: Find My

Type 16: Nearby

Type 12: Handoff

0xb

AirTags Explained It’s not a bug, it’s a feature!

@mattbenyo

Offline Finding Explained It’s not a bug, it’s a feature!

In 5 Minutes

Offline Finding Explained It’s not a bug, it’s a feature!

No GPS!

Offline Finding Explained It’s not a bug, it’s a feature!

No GPS!

..so how does it work?

Offline Finding Explained It’s not a bug, it’s a feature!

Asymmetric Encryption 101

PUBLIC KEY = encrypt
PRIVATE KEY = decrypt

Offline Finding Explained It’s not a bug, it’s a feature!

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

0x12345678910ABCDEFABCDEF

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

0x12345678910ABCDEFABCDEF

Notional key PubKey

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

0x12345678910ABCDEFABCDEF

Notional key PubKey

P224 ELLIPTIC CURVE PUBLIC KEY
224 bits in PubKey = 28 byte key

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Apple Server

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Apple Server
searchpartyd

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Apple Server

Offline Finding Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Apple Server

Can download and
unlock with Private
Key

Offline Finding Explained It’s not a bug, it’s a feature!

If at 3:00pm on Saturday, the AirTag was nearby to a user who claimed they were at the Hilton

Hotel, then the AirTag must have also been at or near the Hilton Hotel at the same time.

What the heck is P224- ECIES?!

● Let’s take a deep dive into encryption (photo cred @replover4eva)

P-224 Encryption in General

The “domain parameters” are already agreed upon (p, a, b, G, n, h) and the curve is represented by the formula:

y2= x3-3x+18958286285566608000408668544493926415504680968679321075787234672564

and (p, a, b, G, n, h) are defined as follows:

p = 26959946667150639794667015087019630673557916260026308143510066298881

a = -3

b = 18958286285566608000408668544493926415504680968679321075787234672564

G= (19277929113566293071110308034699488026831934219452440156649784352033,

19926808758034470970197974370888749184205991990603949537637343198772)

n = 26959946667150639794667015087019625940457807714424391721682722368061

h=1

(FIPS 186-4 Digital Standard)

• Recall the Diffie Hellman key exchange, and the ability to generate a shared secret
• P-224 Elliptic Curve Diffie Hellman (ECDH) is similar, with more parameters

P-224 ECIES
• “Elliptic Curve Integrated Encryption Scheme”

• This is introduced in a 2009 paper (Daniel R. L. Brown. Standards for Efficient Cryptography 1 (SEC 1).

2009. https://www.secg.org/sec1-v2.pdf)

• Supposed to be Even More Secure™ and protect against chosen-plaintext and chosen-ciphertext attacks

• ECIES integrates additional features such as message authentication codes (MAC) and key derivation

functions (KDF) into the protocol, as well as a symmetric encryption scheme for faster encryption times

• In the AirTag implementation, the KDF used is ANSI-X9.63-KDF and the MAC scheme used is SHA-256.

The symmetric key scheme ENC is AES-128-GCM.

• It is important to note that given an elliptic curve and an x-coordinate on that curve, the y-coordinate can be

trivially calculated, so usually only the x-coordinate is shared in practical implementations

https://www.secg.org/sec1-v2.pdf

The State Machine of the AirTag

Continuity Protocol Explained It’s not a bug, it’s a feature!

The AirTag and owner device must collaboratively generate a 28

byte Master key P, (comprised of key pair public p0 and private d0)

as well a 32 byte key Secret Key Separated (SKS)

(basically, they use math to each generate P without either actually

sending P over the channel, much like most shared secret

generation)

AirTag + Owner Device Key Exchange
● Assume an a priori securely established Bluetooth communications channel (

During the Bluetooth pairing procedure, the two devices use an a priori Apple
server key (written into the firmware of both devices) [12]to encrypt these
initial transmissions)

● Collaborative Key Generation Steps (From the Original FindMy Specification)
○ “AirTag Accessory Alice” must generate a P-224 scalar s and a random 32 byte value r, then concatenates s

with r, and calculates a value c1 by calculating the SHA-256 of s concatenated with r.

○ “Owner Device Bob” also generates a P-224 scalar, s’, and a random 32 byte value r’. However, Bob then

uses generational point G to generate S’, where S’ = G * s’ , where * indicates the dot product. Bob’s

iDevice can then send c2 which is a set containing {S’, r’}.

○ Now, S’ is also point on the curve P-224, because it was created from G, the generational point. AirTag

Accessory Alice verifies this. The AirTag will be the first to compute the Master public key P. Using S’ from

the Owner device, the formula is P = S’ +s * G. Remember, P is never sent over the channel, so instead, the

AirTag sends c3 = {s, r}

AirTag + Owner Device Key Exchange (cont)
● Collaborative Key Generation Steps (cont)

○ Next, the owner device does a bit of verification, first, verifying that s is a valid P-224 scalar, and then

computing the SHA-256 hash of s concatenated with r. The AirTag sent this value initially with c1, so the

owner device compares its own calculation to c1, and aborts if they are not equal. Now, the owner device

can independently compute the Master key P with the formula P = S’ +s * G and the private key d with the

formula d = s +s’(mod q), where q is the order of the base point G of the P-224 elliptic curve.

○ At this point, the AirTag and the owner device (Alice and Bob) each have generated P without sending it

over the channel. Using P, each can independently compute SKN and SKS as the 64 byte output of the KDF

function ANSI-X9.63-KDF(x(P), r concatenated with r’). The SKN is the first 32 bytes of this value and

SKS the last 32 bytes.

Continuity Protocol Explained It’s not a bug, it’s a feature!

The AirTag and owner device must collaboratively generate a 28

byte Master key P, (comprised of key pair public p0 and private d0)

as well a 32 byte key Secret Key Separated (SKS)

The master key P and SKS are used to generate a derivative key

PWi, defined by key pairs public pi and private di

Every 15 minutes, a new key pair public pi and private di are

generated, and the new pi value is what is beaconed

All the math
1) ephemeral key is generated (extraction)

SKSi = KDF(SKSi-1, “update”, 32)

2) expansion of key pair

(ui , vi) = KDF(SKSi , “diversify”, 72)

3) Reduce into P-224 valid scalars

ui = ui(mod q-1) + 1 (where q is the order of the base point G of the P-224 elliptic curve.)

vi = vi(mod q-1) + 1

4)Generate pi and di
di = (d0*ui) + vi

pi = (di *G)

Where * is the dot product, G is the point generator and the original key pair is

(d0,p0)

Continuity Protocol Explained It’s not a bug, it’s a feature!

• The Finder device also creates its own ephemeral key
pairs on the P-224 Curve

• When it receives the public key pi, it uses ECDH to
compute another shared secret –> SharedKeyFinder
SKF

• It uses the KDF to compute an ephemeral key
SKF’ = KDF(SKF, “update”, 32)

• The first 16 bytes of SKF’ become a 16 byte

encryption key e’ for AES-GCM. The last 16 bytes of

SKF’ become the initialization vector (IV). This is an

implementation of ECIES (from TU Darmstadt
paper, Alex Heinrich +
Milan Stute)

Continuity Protocol Explained It’s not a bug, it’s a feature!

• The Apple Servers store the locations reports as key
value pairs (SHA256(pi), 88 byte location report)

• You can request a location report as long as you
know the hash

• The owner device collaboratively generated (p0,d0),
so calculating pi and SHA256(pi) is trivial.

• Also, because the owner device can recalculate all of
the private keys from the airtag as well, it will
calculate the corresponding private key di for public
key pi, then using the ephemeral public key , the

owner can calculate the shared secret SKF. Using the

known KDF function, the owner can then calculate

SKF’, which becomes e’ and IV, and was used to

AES- 128 encrypt the original payload, and since

AES is symmetric, this will decrypt that location

report as well.

Continuity Protocol Explained It’s not a bug, it’s a feature!

Type 18: Find My

0xb

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Type 18: Find My

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Type 18: Find My

Type 18: Find My

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

The State Machine of the AirTag

The State Machine of the AirTag

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2Length = 2 2 bytes

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2Length = 2 2 bytes

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2Length = 2 2 bytes

Length = 25

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2Length = 2 2 bytes

Length = 25 25 bytes

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2Length = 2 2 bytes

Length = 25 25 bytes

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2Length = 2 2 bytes

Length = 25 25 bytes

`
CRC

`
CRC

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

7 6 5 4 3 2 1 0

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0
ReservedTracking MaintainedReserved ReservedReservedBattery Battery

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0
ReservedTracking MaintainedReserved ReservedReservedBattery Battery

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

` `

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

` `

Public Key Bits

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

` `

Public Key Bits

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

` `

Public Key Bits

7 6 5 4 3 2 1 0

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

` `

Public Key Bits

7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

` `

Public Key Bits

7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0
Pub KeyReserved ReservedReserved Pub KeyReservedReserved Reserved

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

SeparatedLength = 25 25 bytes

`
CRC

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

“Battery Status”

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

“Battery Status”

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

“Battery Status”

7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0
ReservedTracking MaintainedReserved ReservedReservedBattery Battery

Disconnected

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

Bytes 6-27 of the public key

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`

`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`

`

“Public Key Bits"

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`

`

“Public Key Bits"

7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0
Pub KeyReserved ReservedReserved Pub KeyReservedReserved Reserved

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`

`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`

` `

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`

` `

Hint

Continuity Protocol Explained It’s not a bug, it’s a feature!

?

Continuity Protocol Explained It’s not a bug, it’s a feature!

?
28 bytes

Continuity Protocol Explained It’s not a bug, it’s a feature!

?
Separated

`
CRC

`

` `

Hint

28 bytes

Continuity Protocol Explained It’s not a bug, it’s a feature!

?
Separated

`
CRC

`

` `

Hint

28 bytes

25 bytes

Bluetooth Limitations

● Small Packet Size vs Strong Encryption Need
○ MTU recommendation is 512 bytes (that’s including header info and payload)

○ In practice this is much smaller! And for Bluetooth low energy EVEN smaller (max
recommended payload only 27 bytes)

○ BUT we want to use strong encryption, and a P-224 key of 224 bits is equivalent to an RSA
key of 2048 bits

○ So Apple does something a little creative here….

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

SeparatedLength = 25 25 bytes

`
CRC

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Bytes 6-27

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Bytes 6-27

`

Hint

`

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Bytes 6-27

`

Hint

`
`

`

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Bytes 6-27

`

Hint

`
`

`

d 9

1101 1001

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Bytes 6-27

`

Hint

`
`

`

d 9

1101 1001`

Public Key
Bits

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

`

Hint

`

28 byte key

Bytes 0-5

Bytes 6-27

`

d 9

1101 1001`

`

→0010→10→1001→9

Final PubKey:

Public Key
Bits

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Bytes 6-27

`

Hint

`
`

`

d 9

1101 1001`

Public Key
Bits

→0010→10→1001→9

Final PubKey: 991407543e55f962a3958e

c67a231860353ee746f8cb2771cfbd933f

References
[1] Hardwick, Tim. “Apple Announces AirTag Tracking Devices Starting at $29 Each. MacRumors, 20 Apr. 2021,

https://www.macrumors.com/2021/04/20/apple-unveils-airtags-tracking-devices/.

[2] “AirTag.” Apple, Apr. 2021, https://www.apple.com/airtag/.

[3] “Create Innovative Accessories.” Apple. 2021,https://mfi.apple.com/.

[4] Goldheart, Sam. “AirTag Teardown: Yeah, This Tracks” IFixit, 1 May 2021, https://www.ifixit.com/News/50145/airtag-

teardown-part-one-yeah-this-tracks.

[5] “NRF52832.” Nordic Semiconductor, https://www.nordicsemi.com/products/nrf52832.

[6] NIST. “Digital Signature Standard (DSS).” Federal Information Processing Standards Publication, 2013,

https://doi.org/10.6028/nist.fips.186-4.

[7] Guillaume Celosia, Mathieu Cunche. Saving Private Addresses: An Analysis of Privacy Issues in the Bluetooth-Low-Energy

Advertising Mechanism. MobiQuitous 2019 - 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing,

Networking and Services, Dec 2019, Houston, United States. pp.1-10, ff10.1145/3360774.3360777ff. ffhal-02394629f

[8] Afaneh, Mohammad. “Bluetooth Addresses & Privacy in Bluetooth Low Energy.” Novel Bits, 6 Apr. 2020,

https://novelbits.io/Bluetooth-address-privacy-ble/.

[9] Great Scott Gadgets, https://greatscottgadgets.com/ubertoothone/.

[10] Bluetooth SIG. Bluetooth Core Specification Version 5.2. Tech. rep. 2019.

[11] Heinrich, Alexander, et al. “Who Can Find My Devices? Security and Privacy of Apple’s Crowd-Sourced Bluetooth Location

Tracking System.” Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 3, 2021, pp. 227–245.,

https://doi.org/10.2478/popets-2021-0045.

More References
[12] “Find My Network Accessory Specification.” Apple. Version Release R1. 2020. url:

https://developer.apple.com/ find-my/.

[13] Kassem Fawaz, Kyu-Han Kim, and Kang G Shin. 2016. Protecting Privacy of BLE Device Users. In 25th

USENIX Security Symposium (USENIX Security 16). 1205–1221.

[14] Celosia, Guillaume, and Mathieu Cunche. “Discontinued Privacy: Personal Data Leaks in Apple Bluetooth-

Low-Energy Continuity Protocols.” Proceedings on Privacy Enhancing Technologies, vol. 2020, no. 1, 2020, pp.

26–46., https://doi.org/10.2478/popets-2020-0003.

[15] “Throughput with Bluetooth Low Energy Technology.” Version 4.0 Bluetooth API Documentation. Silicon

Labs, June 2022, https://docs.silabs.com/Bluetooth/4.0/general/system-and- performance/throughput-with-

Bluetooth-low-energy-technology.

[16] Derhgawen, Ashish. “Maximizing BLE Throughput Part 4: Everything You Need to Know.” Punch Through, 16

Nov. 2020, https://punchthrough.com/ble-throughput-part-4/.

[17] “Size Considerations for Public and Private Keys.” Documentation, IBM, 27 May 2021,

https://www.ibm.com/docs/en/zos/2.4.0?topic=certificates-size-considerations-public-private-keys. [18] Jeremy

Martin, Douglas Alpuche, Kristina Bodeman, Lamont Brown, Ellis Fenske, Lucas Foppe, Travis Mayberry, Erik

Rye, Brandon Sipes, and Sam Teplov. “Handoff All Your Privacy: A Review of Apple’s Bluetooth Low Energy

Implementation.” In: (2019). doi: 10.2478/popets-2019- 0057.

More References
[18] Douglas Alpuche, Kristina Bodeman, Lamont Brown, Ellis Fenske, Lucas Foppe, Travis Mayberry, Erik Rye,

Brandon Sipes, and Sam Teplov. “Handoff All Your Privacy: A Review of Apple’s Bluetooth Low Energy

Implementation.” In: (2019). doi: 10.2478/popets-2019- 0057.

[19] Travis Mayberry, Ellis Fenske, Dane Brown, Jeremy Martin, Christine Fossaceca, Erik C. Rye, Sam Teplov, and

Lucas Foppe. 2021. Who Tracks the Trackers? Circumventing Apple’s Anti- Tracking Alerts in the Find My

Network. In Proceedings of the 20th Workshop on Privacy in the Electronic Society (WPES ’21), November 15,

2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3463676.3485616

[20] Daniel R. L. Brown. Standards for Efficient Cryptography 1 (SEC 1). 2009. https://www.secg.org/sec1-v2.pdf

[21] “Apple Platform Security.” Apple. 2020. url: https : / / support.apple.com/guide/security/ (Alternate

Link).https://github.com/0xmachos/Apple-Platform-Security-Guides/blob/master/2020- spring-apple-platform-

security-guide.pdf

[22] Wireshark · Go Deep., https://www.wireshark.org/.

[25] Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Information Theory, Vol.

22, No. 6, 1976, pp. 644-654. https://ee.stanford.edu/~hellman/publications/24.pdf
[26] “Elliptic-Curve Diffie–Hellman.” Wikipedia, Wikimedia Foundation, 9 Nov. 2022,

https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman.

[27] “P-224.” Standard Curve Database, 2020, https://neuromancer.sk/std/nist/P-224.

More References
[28] “Chapter 3 - An Introduction To Cryptography”.Editor(s): Dale Liu, Max Caceres, Tim Robichaux, Dario V. Forte, Eric S.

Seagren, Devin L. Ganger, Brad Smith, Wipul Jayawickrama, Christopher Stokes, Jan Kanclirz, Next Generation SSH2

Implementation,Syngress,2009,

Pages 41-64,https://doi.org/10.1016/B978-1-59749-283-6.00003-9. (https://www.sciencedirect.com/topics/computer-

science/plaintext-attack)

[29] Ryan K.L. Ko, Kim-Kwang Raymond Choo,Chapter 1 -The Cloud Security Ecosystem.Syngress,

2015,Pages 1-14,https://doi.org/10.1016/B978-0-12-801595-7.00001-X. (https://www.sciencedirect.com/topics/computer-

science/el-gamal)

[30] NIST. “Digital Identity Guidelines”. Special Publication, 2017, https://doi.org/10.6028/NIST.SP.800-63b

[31] Abdel Hakeem SA, Kim H. Centralized Threshold Key Generation Protocol Based on Shamir

Secret Sharing and HMAC Authentication. Sensors (Basel). 2022 Jan 3;22(1):331. doi:

10.3390/s22010331
[32] Alexander Heinrich, Niklas Bittner, and Matthias Hollick. 2022. AirGuard - Protecting

Android Users from Stalking Attacks by Apple Find My Devices.

[33] NIST. “Recommendation for Key-Derivation Methods in Key-Establishment Schemes”. Special Publication, 2018,

https://doi.org/10.6028/NIST.SP.800-56Cr1

[34] Ireland, David. “AES-GCM Authenticated Encryption.” CryptoSys PKI Pro Manual, DI Management Services Pty Limited,

10 Sept. 2022, https://www.cryptosys.net/pki/manpki/pki_aesgcmauthencryption.html.

[35] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-curve cryptography. 1 Jan 2017.

https://safecurves.cr.yp.to.

[36] Giry, Damien. “Cryptographic Key Length Recommendation.” BlueKrypt, 24 May 2020, https://www.keylength.com/en/4/.

Questions?

christine@herhaxpodcast.com
@x71n3 on Twitter

mailto:christine@herhaxpodcast.com

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0
ReservedTracking MaintainedReserved ReservedReservedBattery Battery

OLD tracking bit!DISSECTOR CODE

Continuity Protocol Explained It’s not a bug, it’s a feature!

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

0 0000 0000 0

e 1110 1101 d

a 1010 1001 9

6 0110 0101 5

2 0010 0001 1

Old Left nibble Bit 4 trackingBit 5 tracking New Left nibble

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0
ReservedTracking MaintainedReserved ReservedReservedBattery Battery

OLD tracking bit!DISSECTOR CODE

-> 0x14

-> 0x54

-> 0x94

-> 0xd4

-> 0x00

	Slide 1: Dissecting the Encryption Protocols Inside Apple AirTags
	Slide 2: $whoami
	Slide 3: STREAM SEASON 2 NOW! Watch the live podcast replay YouTube.com/@herhaxpodcast
	Slide 4: Agenda
	Slide 5: Continuity Protocol RECAP
	Slide 6: Continuity Protocol Explained
	Slide 7: Continuity Protocol Explained
	Slide 8: Continuity Protocol Explained
	Slide 9: Continuity Protocol Explained
	Slide 10: Continuity Protocol Explained
	Slide 11: Continuity Protocol Explained
	Slide 12: Continuity Protocol Explained
	Slide 13: Continuity Protocol Explained
	Slide 14: Continuity Protocol Explained
	Slide 15: Continuity Protocol Explained
	Slide 16: Continuity Protocol Explained
	Slide 17: Continuity Protocol Explained
	Slide 18: Continuity Protocol Explained
	Slide 19: Continuity Protocol Explained
	Slide 20: Continuity Protocol Explained
	Slide 21: Continuity Protocol Explained
	Slide 22: Continuity Protocol Explained
	Slide 23: Continuity Protocol Explained
	Slide 24: Continuity Protocol Explained
	Slide 25: Continuity Protocol Explained
	Slide 26: Continuity Protocol Explained
	Slide 27: Continuity Protocol Explained
	Slide 28: Continuity Protocol Explained
	Slide 29: Continuity Protocol Explained
	Slide 30: Continuity Protocol Explained
	Slide 31: Continuity Protocol Explained
	Slide 32: Continuity Protocol Explained
	Slide 33: Continuity Protocol Explained
	Slide 34: Continuity Protocol Explained
	Slide 35: Continuity Protocol Explained
	Slide 36: Continuity Protocol Explained
	Slide 37: Continuity Protocol Explained
	Slide 38: Continuity Protocol Explained
	Slide 39: Continuity Protocol Explained
	Slide 40: Continuity Protocol Explained
	Slide 41: Continuity Protocol Explained
	Slide 42: AirTags Explained
	Slide 43: Offline Finding Explained
	Slide 44: Offline Finding Explained
	Slide 45: Offline Finding Explained
	Slide 46: Offline Finding Explained
	Slide 47: Offline Finding Explained
	Slide 48: Offline Finding Explained
	Slide 49: Offline Finding Explained
	Slide 50: Offline Finding Explained
	Slide 51: Offline Finding Explained
	Slide 52: Offline Finding Explained
	Slide 53: Offline Finding Explained
	Slide 54: Offline Finding Explained
	Slide 55: Offline Finding Explained
	Slide 56: Offline Finding Explained
	Slide 57: Offline Finding Explained
	Slide 58: Offline Finding Explained
	Slide 59: Offline Finding Explained
	Slide 60: Offline Finding Explained
	Slide 61: Offline Finding Explained
	Slide 62: What the heck is P224- ECIES?!
	Slide 63: P-224 Encryption in General
	Slide 64: P-224 ECIES
	Slide 65: The State Machine of the AirTag
	Slide 66: Continuity Protocol Explained
	Slide 67: AirTag + Owner Device Key Exchange
	Slide 68: AirTag + Owner Device Key Exchange (cont)
	Slide 69: Continuity Protocol Explained
	Slide 70: All the math
	Slide 71: Continuity Protocol Explained
	Slide 72: Continuity Protocol Explained
	Slide 73: Continuity Protocol Explained
	Slide 74: Continuity Protocol Explained
	Slide 75: Continuity Protocol Explained
	Slide 76: Continuity Protocol Explained
	Slide 77: Continuity Protocol Explained
	Slide 78: The State Machine of the AirTag
	Slide 79: The State Machine of the AirTag
	Slide 80: Continuity Protocol Explained
	Slide 81: Continuity Protocol Explained
	Slide 82: Continuity Protocol Explained
	Slide 83: Continuity Protocol Explained
	Slide 84: Continuity Protocol Explained
	Slide 85: Continuity Protocol Explained
	Slide 86: Continuity Protocol Explained
	Slide 87: Continuity Protocol Explained
	Slide 88: Continuity Protocol Explained
	Slide 89: Continuity Protocol Explained
	Slide 90: Continuity Protocol Explained
	Slide 91: Continuity Protocol Explained
	Slide 92: Continuity Protocol Explained
	Slide 93: Continuity Protocol Explained
	Slide 94: Continuity Protocol Explained
	Slide 95: Continuity Protocol Explained
	Slide 96: Continuity Protocol Explained
	Slide 97: Continuity Protocol Explained
	Slide 98: Continuity Protocol Explained
	Slide 99: Continuity Protocol Explained
	Slide 100: Continuity Protocol Explained
	Slide 101: Continuity Protocol Explained
	Slide 102: Continuity Protocol Explained
	Slide 103: Continuity Protocol Explained
	Slide 104: Continuity Protocol Explained
	Slide 105: Continuity Protocol Explained
	Slide 106: Continuity Protocol Explained
	Slide 107: Continuity Protocol Explained
	Slide 108: Continuity Protocol Explained
	Slide 109: Continuity Protocol Explained
	Slide 110: Continuity Protocol Explained
	Slide 111: Continuity Protocol Explained
	Slide 112: Continuity Protocol Explained
	Slide 113: Continuity Protocol Explained
	Slide 114: Continuity Protocol Explained
	Slide 115: Continuity Protocol Explained
	Slide 116: Continuity Protocol Explained
	Slide 117: Continuity Protocol Explained
	Slide 118: Continuity Protocol Explained
	Slide 119: Continuity Protocol Explained
	Slide 120: Continuity Protocol Explained
	Slide 121: Continuity Protocol Explained
	Slide 122: Continuity Protocol Explained
	Slide 123: Continuity Protocol Explained
	Slide 124: Continuity Protocol Explained
	Slide 125: Bluetooth Limitations
	Slide 126: Continuity Protocol Explained
	Slide 127: Creative Key Storage
	Slide 128: Creative Key Storage
	Slide 129: Creative Key Storage
	Slide 130: Creative Key Storage
	Slide 131: Creative Key Storage
	Slide 132: Creative Key Storage
	Slide 133: Creative Key Storage
	Slide 134: Creative Key Storage
	Slide 135: Creative Key Storage
	Slide 136: Creative Key Storage
	Slide 137: Creative Key Storage
	Slide 138: Creative Key Storage
	Slide 139: Creative Key Storage
	Slide 140: Creative Key Storage
	Slide 141: References
	Slide 142: More References
	Slide 143: More References
	Slide 144: More References
	Slide 145: Questions?
	Slide 146: Continuity Protocol Explained
	Slide 147: Continuity Protocol Explained
	Slide 148: Continuity Protocol Explained

