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System Integrity ProtecKon (SIP)
• Based on Sandbox kernel extension
• Restricts access to many directories on macOS
• Denies debugger aPachments to processes signed directly by Apple
• Also known as rootless, because even root cannot do the above-

menKoned operaKons when the SIP is turned on
• When turned on (default configuraKon) – Transparency, Consent and 

Control (TCC) comes into play
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What resources are privacy-sensitive according to Apple?
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TCC / privacy fundamentals on macOS

• SQLite 3 database
• User: ~/Library/Application Support/com.apple.TCC
• Global: /Library/Application Support/com.apple.TCC
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The problem with Electron applications

• Simplifying you run a website with embedded web browser.
• The packed JavaScript files may have bridge to your native OS API.
• In the past there were a lot of Cross-Site Scripting to Remote Code 

Execution kill chains…



The problem with Electron applications

• Simplifying you run a website with embedded web browser.
• The packed JavaScript files may have bridge to your native OS API.
• In the past there were a lot of Cross-Site Scripting to Remote Code 

Execution kill chains…
• On macOS popular Electron apps require granting TCC permissions
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In the past, there was a code 
injection possible by definition









…but macOS Ventura ruined fixed 😊 that technique
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Granted TCC permissions inheritance

• TCC inheritance system is complicated and caused many vulnerabilities in 
the past (e.g., CVE-2020-10008, CVE-2021-1824)

• From time to time, Apple changes details in the TCC permissions 
inheritance system

• Generally speaking (may not always be true):
• When an app has private TCC entitlements – its permissions are not inherited 

by other apps they spawn
• When an app has TCC permission granted by the user (User clicked “OK” 

in the prompt)  - its permissions are inherited



Granted TCC permissions inheritance

• Electron apps always have permissions granted by the users, so their TCC 
permissions will be inherited by children processes

• If only there was a code injecKon technique that doesn’t break the macOS 
Ventura App ProtecKon mechanism…



INTRODUCING ELECTRONIZ3R



electroniz3r

• Electron apps are like websites with embedded web browsers: you can 
open Dev Tools and execute JavaScript within their context

• By default, Electron apps allow users to spawn them with Web Inspector 
API turned on, using --inspect flag
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electroniz3r
unauthorized access to user’s desktop 

via Visual Studio Code





electroniz3r
unauthorized access to user’s camera 

via MS Teams





OK, but what if the Electron app 
disabled  --inspect flag?





Let’s take Slack.app for example







So, theoretically if the 
Electron app disables library 
validation…🤔







electroniz3r
injecting to an older Slack version







https://github.com/r3ggi/electroniz3r



DETECTIONS

🔎



Detecions

ES_EVENT_TYPE_NOTIFY_EXEC {
[…]
"context" : ”app_path --inspect=13337”
[…]

}



Summing up
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