
ELECTRONizing macOS 
privacy
A  N E W  W E A P O N  I N  Y O U R  R E D  T E A M I N G  A R M O R Y



Whoami?

Wojciech Reguła
Head of Mobile Security at 

• Focused on iOS/macOS #appsec
• Blogger – https://wojciechregula.blog
• iOS Security Suite Creator
• iOS Application Security Engineer 

course creator



Agenda

1. TCC / privacy fundamentals on macOS
2. The problem with Electron applications
3. Granted TCC permissions inheritance
4. Electroniz3r presentation (demo time)
5. Detections
6. Conclusion



Previous macOS 
privacy research



TCC / privacy fundamentals on macOS



TCC / privacy fundamentals on macOS

System Integrity ProtecKon (SIP)
• Based on Sandbox kernel extension
• Restricts access to many directories on macOS
• Denies debugger aPachments to processes signed directly by Apple
• Also known as rootless, because even root cannot do the above-

menKoned operaKons when the SIP is turned on
• When turned on (default configuraKon) – Transparency, Consent and 

Control (TCC) comes into play



TCC / privacy fundamentals on macOS



TCC / privacy fundamentals on macOS

What resources are privacy-sensitive according to Apple?



TCC / privacy fundamentals on macOS



TCC / privacy fundamentals on macOS



TCC / privacy fundamentals on macOS

• SQLite 3 database
• User: ~/Library/Application Support/com.apple.TCC
• Global: /Library/Application Support/com.apple.TCC





The problem with Electron applica<ons



The problem with Electron applications

• Simplifying you run a website with embedded web browser.
• The packed JavaScript files may have bridge to your native OS API.
• In the past there were a lot of Cross-Site Scripting to Remote Code 

Execution kill chains…



The problem with Electron applications

• Simplifying you run a website with embedded web browser.
• The packed JavaScript files may have bridge to your native OS API.
• In the past there were a lot of Cross-Site Scripting to Remote Code 

Execution kill chains…
• On macOS popular Electron apps require granting TCC permissions



The problem with Electron applicaAons



The problem with Electron applications

In the past, there was a code 
injection possible by definition









…but macOS Ventura ruined fixed 😊 that technique



Granted TCC permissions inheritance



Granted TCC permissions inheritance

• TCC inheritance system is complicated and caused many vulnerabilities in 
the past (e.g., CVE-2020-10008, CVE-2021-1824)

• From time to time, Apple changes details in the TCC permissions 
inheritance system

• Generally speaking (may not always be true):
• When an app has private TCC entitlements – its permissions are not inherited 

by other apps they spawn
• When an app has TCC permission granted by the user (User clicked “OK” 

in the prompt)  - its permissions are inherited



Granted TCC permissions inheritance

• Electron apps always have permissions granted by the users, so their TCC 
permissions will be inherited by children processes

• If only there was a code injecKon technique that doesn’t break the macOS 
Ventura App ProtecKon mechanism…



INTRODUCING ELECTRONIZ3R



electroniz3r

• Electron apps are like websites with embedded web browsers: you can 
open Dev Tools and execute JavaScript within their context

• By default, Electron apps allow users to spawn them with Web Inspector 
API turned on, using --inspect flag



electroniz3r



electroniz3r



electroniz3r



electroniz3r



electroniz3r
unauthorized access to user’s desktop 

via Visual Studio Code





electroniz3r
unauthorized access to user’s camera 

via MS Teams





OK, but what if the Electron app 
disabled  --inspect flag?





Let’s take Slack.app for example







So, theoretically if the 
Electron app disables library 
validation…🤔







electroniz3r
injecting to an older Slack version







https://github.com/r3ggi/electroniz3r



DETECTIONS

🔎



Detecions

ES_EVENT_TYPE_NOTIFY_EXEC {
[…]
"context" : ”app_path --inspect=13337”
[…]

}



Summing up





Wojciech Reguła
Head of Mobile Security at SecuRing

@_r3ggi wojciech-regula

Thank you!


