
Broken isolation - draining your
credentials from popular macOS
password managers
b y W o j c i e c h R e g u ł a

NSFullUserName()

Wojciech Reguła
Head of Mobile Security at

• 60+ CVEs in Apple

• Focused on iOS/macOS #appsec
• Certified iOS Application Security Engineer

(iASE) author

• Blogger – https://wojciechregula.blog
• iOS Security Suite Creator

Agenda

1. Introduction
2. macOS security & isolation mechanisms
3. Pwning popular password managers:

• MacPass
• NordPass
• Bitwarden
• KeepassXC
• Protonpass

4. Recommendations for macOS app developers
5. Conclusion

Introduction

Introduc)on

Basic things to understand at the beginning:
• macOS != Linux
• Applications running as the same user should not be able to control

themselves
• If an app wants to be controlled by other apps (for example debuggers) it

must be signed with a special entitlement – com.apple.get-task-allow
• Ptrace is not fully implemented on macOS. You can’t inject your code

using ptrace

macOS security &
isolation mechanisms

macOS security & isolation mechanisms

Why the same-user processes isolation security boundary is so important
on macOS? Without such isolation you can:
• Impersonate private entitlements: bypass TCC (the whole privacy

restrictions)
• Impersonate private entitlements: user->root LPE
• Impersonate private entitlements: SIP bypass
• Trick 3rd party XPC services to perform user->root LPE
• Inject to 3rd party apps to get their TCC (privacy) permissions
• …

macOS security & isolation mechanisms

macOS security & isolation mechanisms

OK, so let’s inject to, for example, logd with Apple’s debugger with root
permissions

macOS security & isola)on mechanisms

• Debugging a process (what gives us a path to code execution within the
debugee’s context) requires getting the task port of the debugee

• It involves using the task_for_pid() function
• As we’ve just seen – calling task_for_pid() is highly restricted on macOS

and is possible only under some circumstances
• The task_for_pid requests are controlled by taskgated and AMFI (Apple

Mobile File Integrity Daemon)

macOS security & isolation mechanisms
When SIP is enabled (default):
• Task port retrieval is usually not possible when the target app is a

platform binary or has hardened runtime*
• If the debugee holds a public com.apple.security.get-task-allow

entitlement, the injection is possible even by the same user (no root is
required).

• If the debugee doesn’t have hardened runtime and was signed without
com.apple.security.get-task-allow entitlement, the injection is possible
with root permissions

• The injection is always possible when debbuger app holds a private
com.apple.system-task-ports entitlement. (FYI lldb or any other official
debugger doesn’t have such an entitlement)

macOS security & isolation mechanisms
If we want to inject our code to 3rd party apps, we’ll be looking for apps:
• with get-task-allow
• without hardened runtime

macOS security & isolation mechanisms
What’s the hardened runtime?
• According to Apple: “The Hardened Runtime, along with System Integrity

Protection (SIP), protects the runtime integrity of your software by
preventing certain classes of exploits, like code injection, dynamically
linked library (DLL) hijacking, and process memory space tampering.”

• TLDR: blocks code injection

macOS security & isola)on mechanisms
• Nowadays all software downloaded from the Internet must be notarized
• Notarization enforces hardened runtime to be turned on
• Theoretically, all password managers should have the hardened runtime

turned on 🤓

macOS security & isolation mechanisms
• Hardened runtime is enforced by setting a code signing attribute
• You can read it in darwin-xnu/blob/main/osfmk/kern/cs_blobs.h

macOS security & isolation mechanisms
• In order to check if hardened runtime is turned on, we can use the built-

in /usr/bin/codesign tool:

macOS security & isolation mechanisms
• To check if there are any hardened runtime exceptions we can again use

the codesign tool:

macOS security & isola)on mechanisms
If we want to inject our code to 3rd party apps, we’ll be looking for apps:
• with get-task-allow
• without hardened runtime
• with hardened runtime containing useful runtime exceptions
• with custom debugging features that don’t depend on get-task-allow

(*wink* *wink* Electron)

Pwning popular password
managers

Pwning popular password managers: MacPass

• A native macOS KeePass client written in Objective-C
• https://github.com/MacPass/MacPass
• Over 6.7k stars and 450 forks on Github

https://github.com/MacPass/MacPass

Pwning popular password managers: MacPass

Pwning popular password managers: MacPass

So maybe we can change one of MacPass’ dynamic libraries or
frameworks?

Nope! That will be blocked by a new macOS isolation mechanism
called App Protection. Only an app with a special TCC permission
or signed with the same certificate can modify its directory (after
first launch)

🤔

🤓

Pwning popular password managers: MacPass

• MacPass has the disable-library-validation entitlement set because it
allows loading custom plugins

• Plugins are stored in ~/Library/Application Support/MacPass (so they are
not protected)

• We can abuse that feature to create a malicious plugin that can drain all
the entries once user unlocks the vault

Pwning popular password managers: Bitwarden

• An open-source password manager with premium plan
• Written in Electron
• Distributed via Mac App Store

Pwning popular password managers: Bitwarden

⁉

Pwning popular password managers: Bitwarden

• How this is possible that an application downloaded from the Internet
does not have the hardened runtime turned on?

• Bacause it was downloaded from Mac App Store which does not enforce
notarization!

• We can simply inject a dynamic library to Bitwarden using
DYLD_INSERT_LIBRARIES

• Does it mean that software downloaded directly from your browser is
more secure than this downloaded from the Mac App Store? 🥲

Pwning popular password managers: Bitwarden

https://developer.apple.com/documentation/xcode/embedding-a-helper-tool-in-a-sandboxed-app

Pwning popular password managers: NordPass

• Downloaded directly from the Internet
• Popular password manager written in Electron
• Critical Electron fuses are turned on what allows code injection

Pwning popular password managers: NordPass

• Downloaded directly from the Internet
• Popular password manager wrimen in Electron
• Crincal Electron fuses are turned on what allows code injecnon

Pwning popular password managers: NordPass

Pwning popular password managers: KeePassXC

• Downloaded directly from the Internet
• Completely open source under the GPLv3 license
• Native, written using QT
• Very good written and well documented. Kudos!

Pwning popular password managers: KeePassXC

• This time I wanted to verify how a browser plugin talks with the main
KeePassXC application to retrieve entries

• The whole process is documented:
https://github.com/keepassxreboot/keepassxc-browser/blob/develop/keepassxc-protocol.md

• Simplifying, there is asymmetric crypto under the hood. Browser plugin
exchanges private&public key

https://github.com/keepassxreboot/keepassxc-browser/blob/develop/keepassxc-protocol.md

Pwning popular password managers: KeePassXC

• The problem is that browsers on macOS are not known for the best
isolation practices

• We can simply grab the private key from the local storage / logs and spoof
the connection with the KeePassXC main app

Pwning popular password managers: ProtonPass

• This one is interesnng as it is a browser plugin only password manager
• There’s no standalone macOS app
• All encrypnon/decrypnon happens in the browser’s JavaScript runnme

Pwning popular password managers: ProtonPass

• Do you remember what I told you about browser isolation security on
macOS? 😂

• Let’s try with a simple Python script that use Selenium to instrument
Firefox to unlock the ProtonPass’ vault and to retrieve a password from it

• (FYI: Selenium is an open source umbrella project for a range of tools and
libraries aimed at supporting browser automation)

Summing up

Summing up

• MacPass – hardened runtime exceptions, downloaded from the Internet
• Bitwarden – no hardened runtime at all, downloaded from the Mac App

Store
• NordPass – typical Electron code injection techniques
• KeePassXC – attacked via a browser plugin
• ProtonPass – available only as a browser plugin, used Selenium to get the

protected entries

Recommenda9ons for
macOS app developers

Recommenda)ons for macOS app developers

• Enable hardened runtime
• Review hardened runtime exceptions
• Enable sandboxing (now TCC protects containers of sandboxed apps)
• Notarize your apps (not only installers :-))
• If you use Electron – disable problematic Electron fuses
• Pentest your apps!

https://courses.securing.pl/

-20% coupon code:

OBTS20

Wojciech Reguła
Head of Mobile Security at SecuRing

@_r3ggi wojciech-regula

Thank you!

